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and this is equal to

∪[(Ai1
1 )c(∩Ai2

2 )c ∩ . . . ∩ (Ain
n )c ∩ . . .]

with i1, i2, . . . , in, . . . integers ≥ 1, and the union extends over all choices of
the sets (Ai1

1 )c, (Ai2
2 )c, . . . , (Ain

n )c, . . . from the respective collections: (A1
i )

c,

(A2
i )

c, . . . , (An
i )c, . . . , i = 1, 2, . . . , n, . . . However, these choices produce

N0 × N0 × . . . × N0 × . . . = NN0
0 = N where N0 and N are the cardinal

numbers of a countable set and of the continuum, respectively. Thus, there are
uncountable members in the union, and hence the union need not be in A. In
other word, Ac need not be in A, so that A need not be a σ -field.
Remark: For the justification of the equality, asserted in the derivations related to
Ac, refer to the remark following the proof of Exercise 41. #

Chapter 2
Definition and Construction of a Measure and its Basic Properties
1. If � is finite, then μ is ≥ 0, μ(�) = 0 and finitely additive (since there are

only finitely many subsets of �). Thus, μ is a measure, and also finite. If � is
denumerable, � = {ω1, ω2, . . .}, then μ ≥ 0, μ(�) = 0, and if An, n ≥ 1,
are �= � and pairwise disjoint, then μ

(∑∞
n=1 An

) = ∞ and
∑∞

n=1 μ
(

An
) = ∞

since each term is ≥ 1. Thus, μ is a measure. It is σ -finite, since � =∑∞
n=1{ωn}

and μ({ωn}) = 1 (finite). #
2. (i) Let Ai ∈ C, i = 1, . . . , n, Ai ∩ A j = �, i �= j , and set A = ∑n

i=1 Ai ,
so that A ∈ C. Then either A is finite or Ac is finite. If A is finite, then all
Ai , i = 1, . . . , n, are finite, and therefore P(A) = 0 = 0 + . . . + 0 =
P(A1) + . . . + P(An). If Ac is finite, then A is not finite and hence at
least one of A1, . . . , An is not finite; call Ai0 such an event. We claim
that Ai0 is unique. Indeed, if Ai and A j , i �= j , are not finite, then Ac

i
and Ac

j are finite. Since Ai ∩ A j = �, it follows that Ai ⊂ Ac
j and

hence Ai is finite, a contradiction. Then
∑n

i=1 P(Ai ) = P(Ai0) = 1
(since P(Ai ) = 0, i �= i0, as being all finite), and P(A) = 1. Hence
P(A) =∑n

i=1 P(Ai ).
(ii) Let � = {ω1, ω2, . . .} and take Ai = {ωi }, so that Ai ∩ A j = �,

i �= j , and P(Ai ) = 0 for all i . However, P
(∑∞

i=1 Ai
)

(= P(�)) = 1
since

∑∞
i=1 Ai is infinite (and

(∑n
i=1 Ai

)c = � finite). Therefore
P
(∑∞

i=1 Ai
) = 1 �= 0 =∑∞

i=1 P(Ai ), and P is not σ -additive.
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(iii) Let An ∈ C, n ≥ 1, Ai ∩ A j = �, i �= j , and set A = ∑∞
n=1 An , so that

A ∈ C. Then either A is finite or Ac is finite. If A is finite, then all Ans are
finite (indeed, A is only the sum of finitely many of the Ans) and hence
P(An) = 0 for all n, and also P(A) = 0. Thus, P(A) = ∑∞

n=1 P(An)

(actually, the σ -additivity here degenerates to finite additivity). If Ac is
finite, then A is infinite. Since � is uncountable, it follows that at least
one of the Ans is infinite, because otherwise A would be countable (so
that A + Ac = � is countable, a contradiction) ; call An0 such an event.
We claim that An0 is unique. Indeed, if Ai and A j , i �= j , are infinite,
then Ac

i and Ac
j are finite. Since Ai ∩ A j = �, it follows that Ai ⊂ Ac

j

and hence Ai is finite, a contradiction. Then
∑∞

n=1 P(An) = P(An0) = 1
(since P(An) = 0, n �= n0, as being all finite), and P(A) = 1. Hence
P(A) =∑∞

n=1 P(An).
Finally, it is clear that P(A) ≥ 0, P(�) = 0 and P(�) = 1. These prop-
erties along with the σ -additivity just established make P a probability
measure. #

3. Clearly, P(A) ≥ 0, P(�) = 0 and P(�) = 1 since �c = � countable. It
remains to establish σ -additivity. Let An ∈ C, n ≥ 1, Ai ∩ A j = �, i �= j , and
set A = ∪∞

n=1 An . Since A ∈ C, it follows that either A is countable or Ac is
countable. If A is countable, then all Ans are countable, and hence P(A) = 0 and
P(An) = 0, n ≥ 1, so that P(A) = ∑∞

n=1 P(An). If Ac is countable, then A is
uncountable, and therefore at least one of the Ans is uncountable; call An0 such an
event. We claim that An0 is unique. Indeed, if Ai and A j , i �= j , are uncountable,
then Ac

i and Ac
j are countable. Since Ai ∩ A j = �, it follows that Ai ⊂ Ac

j

and hence Ai is countable, a contradiction. Then
∑∞

n=1 P(An) = P(An0) = 1
(since P(Ai ) = 0, i �= n0, as being all countable), and P(A) = 1. Hence
P(A) =∑∞

n=1 P(An). #
4. P(An) = 1 if and only if P(Ac

n) = 0, which implies that P
(∪∞

n=1 Ac
n

) ≤∑∞
n=1 P(Ac

n) = 0; i.e., P
(∪∞

n=1 Ac
n

) = 0 or P
[(∩∞

n=1 An
)c] = 0,

and hence P
(∩∞

n=1 An
) = 1. #

5. For each n ≥ 2, there are at most n −1 events Ai s for which P(Ai ) > 1
n , because

otherwise, we could choose n events with P(Ai j ) > 1
n , so that

∑n
j=1 P(Ai j ) > 1.

However,
∑n

j=1 Ai j ⊆ � and
∑n

j=1 P(Ai j ) = P
(∑n

j=1 Ai j

)
(by pairwise

disjointness), and this is ≤ P(�) = 1, a contradiction. Thus, if In = {i ∈
I ; P(Ai ) > 1

n }, then the cardinality of In is ≤ n−1. Set I0 = {i ∈ I ; P(Ai ) > 0}.
Then, clearly, I0 = ∪∞

n=2 In , and since each In is finite, I0 is countable. #
6. Clearly, μ(A) ≥ 0 and μ(�) = 0. To establish σ -additivity. To this end, let

An ∈ A, Ai ∩ A j = �, i �= j , and set A =∑∞
n=1 An . Then:

μ(A) =
∑
ωn∈A

pn =
∞∑

i=1

∑
ωn∈Ai

pn =
∞∑

i=1

μ(Ai ). #
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7. Let �+ = {ωns; pn > 0}. Then the atoms are those A which are of the form:
A = {ωn} ∪ N , where � ⊆ N ⊆ � − �+. #

8. μ
(
limn→∞ An

) = μ
(∪∞

n=1∩∞
i=n Ai

) = μ
(
limn→∞∩∞

i=n Ai
) = limn→∞

μ
(∩∞

i=n Ai
) ≤ limn→∞ μ(An) since ∩∞

i=n Ai ⊆ An . Next, μ
(
limn→∞ An

) =
μ
(∩∞

n=1∪∞
i=n Ai

) = μ
(
limn→∞∪∞

i=n Ai
) = limn→∞ μ

(∪∞
i=n Ai

)
, provided

μ
(∪∞

i=n Ai
)

< ∞ for some n, and this is ≥ limn→∞μ(An) since ∪∞
i=n Ai ⊇ An . #

9. μ0 is an outer measure; i.e., μ0(�) = 0, μ0 is ↑, and μ0 is sub-σ -additive,
because: μ0(�) = I�(ω) = 0; A ⊆ B implies IA(ω0) ≤ IB(ω0), so that
μ0(A) = IA(ω0) ≤ IB(ω0) = μ0(B); clearly, I∪∞

i=1 Ai (ω0) ≤ ∑∞
i=1 IAi (ω0), so

that μ0
(∪∞

i=1 Ai
) = I∪∞

i=1 Ai (ω0) ≤∑∞
i=1 IAi (ω0) =∑∞

i=1 μ0(Ai ). #
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That μ0(�) = 0 and ↑ are obvious. Denote by Ci the i-th column, i = 1, . . . , 10,
and let An ⊆ �, n ≥ 1. To show μ0

(∪n≥1 An
) ≤ ∑

n≥1 μ0(An). Set A =
∪n≥1 An and supposeμ(A) = k. Then there exist k columns Ci1 , . . . , Cik such that
Ci j ∩ A �= �, j = 1, . . . , k. This implies that there exists at least one x j ∈ Ci j ∩ A
with x j ∈ Ci j and x j ∈ A, so that x j ∈ Ci j and x j ∈ An j , j = 1, . . . , k, where
n1, . . . , nk are chosen from the set {1, 2, . . .} and need not be distinct. Then
μ0(An j ) ≥ 1, j = 1, . . . , k, and therefore:

k ≤
k∑

j=1

μ0(An j ) ≤
∑
n≥1

μ0(An j ) or μ0
(

∪
n≥1

An

)
≤
∑
n≥1

μ0(An). #
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11.
(i) In the first place, it is clear that μ∗(�) = 0 and μ∗(�) = 1. Next, let

� ⊂ A ⊂ �. The only covering of A by member of F is �, so that
μ∗(A) = 1. Thus, μ∗(A) = 0 if A = � and μ∗(A) = 1 if A �= �.

(ii) First, � and � are μ∗-measurable, and let � ⊂ A ⊂ � (which implies
� ⊂ Ac ⊂ �). Then A cannot be μ∗-measurable. Indeed, in the required
equality μ∗(D) = μ∗(A ∩ D) + μ∗(Ac ∩ D), take D = �. Then
the left-hand side is μ∗(D) = μ∗(�) = 1, and the right-hand side is
μ∗(A ∩ �) + μ∗(Ac ∩ �) = μ∗(A) + μ∗(Ac) = 1 + 1 = 2, and the
equality is violated. Hence A∗ = {�,�}. #

12.
(i) C is not a field because, e.g., {ω1, ω2} ∪ {ω1, ω3} = {ω1, ω2, ω3} /∈ C.
(ii) Clearly, μ(A) ≥ 0 and μ(�) = 0. The only two disjoint sets whose sum

is also in C are: {ω1, ω2}+ {ω3, ω4} = �, {ω1, ω3}+ {ω2, ω4} = �, and,
by taking measures, we have: 3+3 = 6, 3+3 = 6, so that μ is a measure.

(iii) On C: μ1(�) = μ2(�) = 0, μ1(�) = μ2(�) = 6, μ1({ω1, ω2}) = 3 =
μ2({ω1, ω2}), μ1({ω1, ω3}) = 3 = μ2({ω1, ω2}), μ1({ω2, ω4}) = 3 =
μ2({ω2, ω4}), μ1({ω3, ω4}) = 3 = μ2({ω3, ω4}), so that μ1 = μ2 on C.

(iv) Write out the subsets of � and their coverages by unions of members of
C with the smallest measures to get:

ω1 : {ω1, ω2}
ω2 : {ω1, ω2}
ω3 : {ω1, ω3}
ω4 : {ω2, ω4}

{ω1, ω2} : {ω1, ω2}
{ω1, ω3} : {ω1, ω3}
{ω1, ω4} : {ω1, ω2} ∪ {ω2, ω4} ∪, {ω1, ω2}

∪ {ω3, ω4}, {ω1, ω3} ∪ {ω2, ω4},
{ω1, ω3} ∪ {ω3, ω4}

{ω2, ω3} : {ω1, ω2} ∪ {ω1, ω3} ∪, {ω1, ω2}
∪ {ω3, ω4}, {ω1, ω3} ∪ {ω2, ω4},
{ω2, ω4} ∪ {ω3, ω4}

{ω2, ω4} : {ω2, ω4}
{ω3, ω4} : {ω3, ω4}

{ω1, ω2, ω3} : {ω1, ω2} ∪ {ω1, ω3}
{ω1, ω2, ω4} : {ω1, ω2} ∪ {ω2, ω4}
{ω1, ω3, ω4} : {ω1, ω3} ∪ {ω2, ω4}
{ω2, ω3, ω4} : {ω2, ω4} ∪ {ω3, ω4}. Then:
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μ∗({ω1}) = μ∗({ω2}) = μ∗({ω3}) = μ∗({ω4}) = 3,

μ∗({ω1, ω2}) = μ∗({ω1, ω3}) = μ∗({ω2, ω4}) = μ∗({ω3, ω4}) = 3,

μ∗({ω1, ω4}) = μ∗({ω2, ω3}) = 6,

μ∗({ω1, ω2, ω3}) = μ∗({ω1, ω2, ω4}) = μ∗({ω1, ω3, ω4})
= μ∗({ω2, ω3, ω4}) = 6.

(v) By part (iv), μ∗ �= μ1 �= μ2 because, e.g., μ1({ω1, ω4}) = 2,

μ2({ω1, ω4}) = 4 and μ∗({ω1, ω4}) = 6, all distinct. #

13. (i) Immediate.
(ii) The only partition of � with members in C is {A, Ac} and μ(A) =

μ(Ac) = 0 (Ac = {0, 2, 4, . . .}).
(iii) On C, μ1(�) = μ2(�) = 0, and μ1(A) = μ1(Ac) = μ1(�) = ∞ =

μ2(A) = μ2(Ac) = μ2(�).
(iv) Let � ⊂ B ⊂ �. Then the only possible coverages of B by members of

C are: A, Ac,�, all of which have μ-measure ∞. Thus, μ∗(B) = ∞ for
every B as above.

(v) Let � ⊂ B ⊂ �. Then if D ⊂ � is = �, from � = (B∩�)+(Bc∩�), it
follows that 0 = 0, whereas for D �= �, the relation D = (B∩D)+(Bc∩
D) implies that at least one of B ∩ D and Bc ∩ D is �= �. Hence ∞ = ∞
and the equality holds again. Since � and � are always μ∗-measurable,
it follows that A∗ = P(�). #

15. (i) To show that A�M = (A − N ) ∪ [N ∩ (A�M)], where M ⊆ N . We have

A�M = (A�M) ∩ � = (A�M) ∩ (N ∪ N c)

= [(A�M) ∩ N ] ∪ [(A�M) ∩ N c]
= [N ∩ (A�M)] ∪ {[(A − M) ∪ (M − A)] ∩ N c}
= [N ∩ (A�M)] ∪ {[(A ∩ Mc) ∪ (Ac ∩ M)] ∩ N c}
= [N ∩ (A�M)] ∪ (A ∩ Mc ∩ N c) ∪ (Ac ∩ M ∩ N c)

= [N ∩ (A�M)] ∪ (A ∩ Mc ∩ N c)

(since M ⊆ N implies N c ⊆ Mc and hence M ∩ N c = �)

= [N ∩ (A�M)] ∪ (A ∩ N c) (since N c ⊆ Mc)

= (A − N ) ∪ [N ∩ (A�M)].
(ii) A ∪ M = [(A − N ) ∪ (A ∩ N )] ∪ M

= (A − N ) ∪ [(A ∩ N ) ∪ M]
= (A − N ) ∪ [(A ∩ N ) ∪ (M ∩ N )] (since M ⊆ N )

= (A − N ) + [(A ∪ M) ∩ N ]
= (A − N )�[N ∩ (A ∪ M)]

(since for B and C with B ∩ C = �, B + C = B�C).
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(iii) Let B ∈ A∗. Then B = A�M for some A ∈ A and M ⊆ N , N ∈ A
with μ(N ) = 0. By part (i), B = A�M = (A − N ) ∪ [N ∩ (A�M)] with
(A− N ) ∈ A and N ∩(A�M) ⊆ N . That is, B is of the form A∪ M with A
replaced by A−N (a member of A) and M replaced by N ∩(A�M) (which
is a subset of N with N ∈ A and μ(N ) = 0). It follows that B ∈ Ā. Next, let
B ∈ Ā. Then B = A ∪ M for some A ∈ A and some M ⊆ N with N ∈ A
and μ(N ) = 0. By part (ii), B = A ∪ M = (A − N )�[N ∩ (A ∪ M)] with
(A − N ) ∈ A and N ∩ (A ∪ M) ⊆ N . That is, B is of the form A ∪ M with
A replaced by A − N (a member of A) and M replaced by N ∩ (A ∪ M)

(which is a subset of N ∈ A and μ(N ) = 0). It follows that B ∈ A∗.
Therefore A∗ = Ā.

Note: Parts (i) and (ii) are also established by showing that each side is contained
in the other. This is done as follows.

(i) Let ω belong to the left-hand side; i.e., ω ∈ A�M , so that ω ∈ A and
ω /∈ M . That ω /∈ M implies that either ω /∈ N or ω ∈ N . If ω /∈ N , then
ω ∈ (A − N ), so that ω belongs to the right-hand side. If ω ∈ N , then
ω ∈ [N ∩ (A�M)], so that ω belongs to the right-hand side again.
Next, let ω belong to the right-hand side. Then ω ∈ (A − N ) or ω ∈
[N ∩ (A�M)]. If ω ∈ (A − N ), then ω ∈ A and ω /∈ N , so that ω ∈ A and
ω /∈ M . It follows that ω belongs to the left-hand side. On the other hand,
if ω ∈ [N ∩ (A�M)], then ω ∈ (A�M), so that ω belongs to the left-hand
side again.

(ii) Let ω belong to the left-hand side; i.e., ω ∈ A ∪ M , so that ω ∈ A and
ω ∈ M or to both. Let ω ∈ A. Also, either ω ∈ N or ω /∈ N . If ω ∈ N , then
ω ∈ [N ∩ (A ∪ M)], so that ω belongs to the right-hand side. If ω /∈ N ,
then ω ∈ (A − N ), so that ω belongs to the right-hand side again. Finally,
let ω ∈ M . Then ω ∈ N and hence ω ∈ [N ∩ (A ∪ M)], so that ω belongs
to the right-hand side.
Next, let ω belong to the right-hand side. Then either ω ∈ (A − N ) or
ω ∈ [N ∩ (A ∪ M)]. Let ω ∈ (A − N ). Then ω ∈ A and (ω /∈ N ), so that
ω belongs to the left-hand side. If ω ∈ [N ∩ (A ∪ M)], then ω ∈ (A ∪ M),
so that ω belongs to the left-hand side. #

16. Ā(= A∗) �= � since, e.g., � = �∪�,� ∈ A, μ(�) = 0, so that � ∈ Ā. Next,
for B ∈ Ā to show that Bc ∈ Ā. Now B ∈ Ā implies B = A ∪ M, A ∈ A,
M ⊆ N ∈ A, μ(N ) = 0. Then

Bc = (A ∪ M)c = Ac ∩ Mc

= Ac ∩ [Mc ∩ (N ∪ N c)]
= Ac ∩ [(Mc ∩ N ) ∪ (Mc ∩ N c)]
= Ac ∩ [(Mc ∩ N ) ∪ N c] (since M ⊆ N implies N c ⊆ Mc)

= (Ac ∩ N c) ∪ (N ∩ Mc ∩ Ac)



e24 Revised Answers Manual to an Introduction

with Ac ∩ N c ∈ A and N ∩ Mc ∩ Ac ⊆ N . That is, Bc is of the form A ∪ M with
A (a member of A) replaced by Ac ∩ N c and M (⊆ N ∈ A with μ(N ) = 0)
replaced by N ∩Mc∩Ac. It follows that Bc ∈ Ā. Finally, let Bi ∈ Ā, i = 1, 2, . . .

Then Bi = Ai ∪ Mi with Ai ∈ A and Mi ⊆ Ni ∈ A with μ(Ni ) = 0, i ≥ 1.
Therefore

∞∪
i=1

Bi = ∞∪
i=1

(Ai ∪ Mi ) = (
∞∪

i=1
Ai ) ∪ (

∞∪
i=1

Mi ) with
∞∪

i=1
Ai ∈ A

and ∪∞
i=1 Mi ⊆ ∪∞

i=1 Ni , a member of A with μ(∪∞
i=1 Ni ) = 0. It follows that

∪∞
i=1 Bi belongs in Ā, and Ā is a σ -field. #

17.
(i) In the first place, the definition μ∗(A�M) = μ(A) implies μ∗(A ∪ M) =

μ(A). Indeed, A ∪ M = (A − N )�[N ∩ (A ∪ M)] with (A − N ) ∈ A and
N ∩ (A ∪ M) ⊆ N ∈ A, μ(N ) = 0. Therefore μ∗(A ∪ M) = μ(A − N ) =
μ(A ∩ N c) = μ(A ∩ N c)+μ(A ∩ N ) = μ[(A ∩ N c)∪ (A ∩ N )] = μ(A).
In the process of the proof, we also have seen that μ(A − N ) = μ(A).

(ii) As it was just seen, μ∗(A ∪ M) = μ(A − N ) = μ(A). We show that μ∗ so
defined on A∗ is well-defined. That is, if B = A1 ∪ M1 = A2 ∪ M2, then
μ(A1) = μ(A2). Indeed,

A1 = (A1 ∩ A2) + (A1 ∩ Ac
2) = (A1 ∩ A2)�(A1 ∩ Ac

2).

Next, A1 ∩ Ac
2 ⊆ M2, because x ∈ (A1 ∩ Ac

2) implies x ∈ A1 and x /∈ A2,
hence x ∈ (A1 ∪ M1) and x /∈ A2, so that x ∈ B and x /∈ A2. This implies
that x ∈ (A2∪M2) and x /∈ A2, so that x ∈ M2. Thus, A1∩Ac

2 ⊆ M2 ⊆ N2.
From this and the fact that B = (A1 ∩ A2)�(A1 ∩ Ac

2), it follows that
μ∗(B) = μ(A1 ∩ A2) (= μ(A1)). Likewise, A2 = (A1 ∩ A2)�(Ac

1 ∩ A2)

with Ac
1 ∩ A2 ⊆ M1 ⊆ N1, so that μ∗(B) = μ(A1 ∩ A2) (= μ(A2)). It

follows that μ(A1) = μ(A2) and μ∗ is well-defined.
(iii) Clearly, μ∗(�) = μ∗(���) = μ(�) = 0, and μ∗(A ∪ M) = μ(A) (as

was seen in part (i)) and this is ≥ 0. Finally, let Bi ∈ Ā, i = 1, 2, . . . , Bi ∩
B j = �, i �= j . Then Bi = Ai ∪ Mi , B j = A j ∪ M j , and

� = Bi ∩ B j = (Ai ∩ A j ) ∪ (Ai ∩ M j ) ∪ (Mi ∩ A j ) ∪ (Mi ∩ M j ),

so that Ai ∩ A j = �. Therefore

μ∗
( ∞∑

i=1

Bi

)
= μ∗

[ ∞∪
i=1

(Ai ∪ Mi )

]
= μ∗

[( ∞∪
i=1

Ai

)
∪
( ∞∪

i=1
Mi

)]

= μ

( ∞∪
i=1

Ai

)
= μ

( ∞∑
i=1

Ai

)
=

∞∑
i=1

μ
(

Ai
)
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=
∞∑

i=1

μ∗(Ai ∪ Mi )

=
∞∑

i=1

μ∗ (Bi
)
.

It follows that μ∗ is a measure on Ā(= A∗). #

18. (i) Let B ∈ Ĉ and suppose that B = A for some A ∈ A. Then B = A��
with � ∈ A and μ(�) = 0, so that B ∈ A∗. If B ⊆ N for some N ∈ A
with μ(N ) = 0, we have B = B�� with � ∈ A and B ⊆ N ∈ A with
μ(N ) = 0, so that B ∈ A∗. Thus Ĉ ⊆ A∗.

(ii) Ĉ ⊆ A∗ implies that σ(Ĉ) = Â ⊆ A∗, so it suffices to show that A∗ ⊆ Â.
Let B ∈ A∗, so that B = A�M with A ∈ A and M ⊆ N , N ∈ A,

μ(N ) = 0. Since A = A��, it follows that A ∈ Ĉ and hence A ∈ Â.
Also, M = ��M , so that M ∈ Ĉ and hence M ∈ Â. Thus, A, M ∈ Â and
therefore A�M ∈ Â or B ∈ Â. #

19. Let� = {ω1, ω2, ω3, ω4}, and letA = {�, {ω1, ω2}, {ω3, ω4}, {ω1, ω2, ω3, ω4}}.
ThenA is, trivially, aσ -field. OnA, defineμ as follows:μ(�) = 0 = μ({ω1, ω2}),
μ({ω3, ω4}) = μ({ω1, ω2, ω3, ω4}) = 1. Then, clearly, μ is a measure on A.
But {ω1} ⊂ {ω1, ω2} ∈ A with μ({ω1, ω2}) = 0 whereas {ω1} /∈ A. #

20. Recall that μ0 is an outer measure on P(�) if μ0(�) = 0, μ0 is ↑ and sub-σ -
additive. Now, let N ∈ A0 with μ0(N ) = 0, and let M be an arbitrary subset
of N . To show that M ∈ A0. It suffices to show that μ0(D) ≥ μ0(M ∩ D) +
μ0(Mc ∩ D) for every D ⊆ �. We have: M ⊆ N , hence M ∩ D ⊆ N ∩ D and
μ0(M ∩ D) ≤ μ0(N ∩ D) = 0, so that μ0(M ∩ D) = 0. Next, Mc ∩ D ⊆ D
and μ0(Mc ∩ D) ≤ μ0(D), so that μ0(D) ≥ μ0(M ∩ D) + μ0(Mc ∩ D) for
every D ⊆ �. #

21. On B, define μ in the following manner: μ(B) = number of integers in B.
Then, clearly, μ is a measure satisfying the condition μ(finite interval) < ∞.
Next, let xn ↑ −2, so that μ((xn, 0]) = 3 for all sufficiently large n, and hence
Fc(xn) = c−3 for all sufficiently large n. But Fc(−2) = c−μ((−2, 0]) = c−2.
Hence Fc is not left-continuous. #

22. Indeed, if μ were additive, then c = μ(�) = μ(� ∪ �) = μ(�) + μ(�) = 2c,
so that 2 = 1, a contradiction. #

23. For n = 2, let μ1 and μ2 be σ -finite, and let {A1
1, A1

2, . . .} and {A2
1, A2

2, . . .} be
the associated partitions for which μ1(A1

i ) < ∞, μ2(A2
i ) < ∞, i ≥ 1. Then

{A1
i ∩ A2

j , i, j ≥ 1} is a partition of � and μ(A1
i ∩ A2

j ) = μ1(A1
i ∩ A2

j ) +
μ2(A1

i ∩ A2
j ) < ∞, i, j ≥ 1, so that μ is σ -finite.

Next, assume the assertion to be true for n = k and we will establish it for
n = k + 1. By setting μ0 = μ1 + . . . + μk , we have that both μ0 and μk+1
are σ -finite, and let {Bi , i ≥ 1} and {Ak+1

i , i ≥ 1} be the associated partitions
for which μ0(Bi ) < ∞, μk+1(Ak+1

i ) < ∞, i ≥ 1. Then {Bi ∩ Ak+1
j , i, j ≥ 1}
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is a partition of �, and μ0(Bi ∩ Ak+1
j ) ≤ μ0(Bi ) < ∞, μk+1(Bi ∩ Ak+1

j ) ≤
μk+1(Ak+1

j ) < ∞, i, j ≥ 1. Thus,

(μ1 + . . . + μk+1)(Bi ∩ Ak+1
j ) = (μ1 + . . . + μk)(Bi ∩ Ak+1

j ) +
μk+1(Bi ∩ Ak+1

j ) < ∞, i, j ≥ 1, so that

μ1 + . . . + μk+1 is σ -finite. #

24. (i) Clearly, (A ∩ Bc) ∪ (Ac ∩ B) = A�B = (A ∪ B) − (A ∩ B). Hence

P[(A ∩ Bc) ∪ (Ac ∩ B)] = P[(A ∪ B) − (A ∩ B)]
= P(A ∪ B) − P(A ∩ B) (since A ∩ B ⊆ A ∪ B)

= P(A) + P(B) − P(A ∩ B) − P(A ∩ B)

= P(A) + P(B) − 2P(A ∩ B).

(ii) We will use the induction hypothesis.
For n = 2, we have:

P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2),

so that

P(A1 ∩ A2) = P(A1) + P(A2) − P(A1 ∪ A2)

≥ P(A1) + P(A2) − 1.

Next, assume it to be true for n = k and establish it for n = k + 1. Indeed,

P(A1 ∩ . . . ∩ Ak+1) = P[(A1 ∩ . . . ∩ Ak) ∩ Ak+1]
≥ P(A1 ∩ . . . ∩ Ak) + P(Ak+1) − 1

≥
k∑

i=1

P(Ai ) − (k − 1) + P(Ak+1) − 1

=
k+1∑
i=1

P(Ai ) − [(k + 1) − 1]. #

25. limn→∞ An = ∪∞
n=1 ∩∞

k=n Ak = ∪∞
n=1{ω2} = {ω2}, limn→∞ An = ∩∞

n=1 ∪∞
k=n

Ak = ∩∞
n=1{ω1, ω2, ω3} = {ω1, ω2, ω3}, so that P(limn→∞ An) = P({ω2}) =

1
3 , P(limn→∞ An) = P({ω1, ω2, ω3}) = 7

10 ; also, P(A2n−1) = P({ω1, ω2}) =
1
2 , P(A2n) = P({ω2, ω3}) = 8

5 , so that limn→∞ P(An) = 1
2 and limn→∞

P(An) = 8
5 . Observe that

P( lim
n→∞

An) = 1

3
�= 1

2
= lim

n→∞
P(An),

and

P( lim
n→∞ An) = 7

10
�= 8

5
= lim

n→∞ P(An). #
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26. (i) If {ωi } ∈ A for all ωi , then, clearly, every subset of � is in A, so that
A = P(�). On the other hand, if A = P(�), then all subjects of � are in
A, and in particular, so are {ωi } for all ωi s.

(ii) It is immediate. #

27. (i) That μ(A) ≥ 0 and μ(�) = 0 are immediate. Next, let A1, . . . , An be
pairwise disjoint. Then to show that μ(

∑n
i=1 Ai ) =∑n

i=1 μ(Ai ). If at least
one of the Ai s is infinite, then

∑n
i=1 Ai is infinite, so that μ(

∑n
i=1 Ai ) =

∞. Also, at least one of the terms on the right-hand side is ∞, so that∑n
i=1 μ(Ai ) = ∞. On the other hand, if all A1, . . . , An are finite, then∑n
i=1 Ai is finite and hence μ(

∑n
i=1 Ai ) = 0. The right-hand side is also

equal to 0 since each term is 0. Next, μ is not σ -additive, because if all
Ai s are finite, then

∑∞
i=1 Ai is infinite, so that μ(

∑∞
i=1 Ai ) = ∞, whereas∑∞

i=1 μ(Ai ) =∑∞
i=1 0 = 0.

(ii) Clearly, � = ∪∞
n=1 An , where An = {ω1, . . . , ωn}, so that An ⊂ An+1,

n ≥ 1, and μ(An) = 0 for all n. Since μ(An) = 0, n ≥ 1, it follows that
μ(Ac

n) = ∞ for all n. #

28. (i) We have to prove that μ0(�) = 0, μ0(A) ≤ μ0(B) for A ⊂ B, and μ0

is a sub-σ -additive. That μ0(�) = 0 holds by the definition of μ0. Next,
suppose that A ⊂ B. There are three cases to consider. Let B be finite.
Then A is finite, and μ0(A) = a

a+1 < b
b+1 = μ0(B) since a < b. Let B

be infinite but A be finite. Then μ0(A) = a
a+1 < 1 = μ0(B). Finally, let

both A and B be infinite. Then μ0(A) = 1 ≤ 1 = μ0(B).
Now to establish sub-σ -additivity:

μ0(
∞∪

n=1
An) ≤

∞∑
n=1

μ0(An).

Suppose that at least one of the Ans is infinite, e.g., An0 . Then the union
∪∞

n=1 An is infinite, and hence μ0(∪∞
n=1 An) = 1, whereas

∑∞
n=1 μ0(An) ≥

1, since μ0(An0) = 1 and μ0(An) ≥ 0, n ≥ 1. Next, let all An be finite
and �= �. Then ∪∞

n=1 An is infinite, so that μ0(∪∞
n=1 An) = 1. As for the

right-hand side, μ0(An) = an
an+1 ≥ 1

2 for all n, so that
∑∞

n=1 μ0(An) =
∞. Finally, suppose that only finitely many of the Ans are finite, e.g.,
An1 , . . . , Ank . Then, clearly, sup(An1 ∪ . . . ∪ Ank ) ≤ sup An1 + . . . +
sup Ank , so that μ0(∪∞

n=1 An) ≤ ∑∞
n=1 μ0(An). Therefore μ0 is an outer

measure.
(ii) By Remark 6(i), A is μ0-measurable if

μ0(D) ≥ μ0(A ∩ D) + μ0(Ac ∩ D) for every D ⊆ �.

Also, by Remark 6(ii), � and � are μ0-measurable, so to investigate the
last inequality for � ⊂ A ⊂ �. Consider the following possible cases.
Let both A and Ac be infinite, and take D = �. Then μ0(�) = 1, but
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μ0(A ∩ �) + μ0(Ac ∩ �) = μ0(A) + μ0(Ac) = 1 + 1 = 2, so that the
inequality is violated. Let A be infinite but Ac be finite, and take D = �.
Then μ0(�) = 1, but μ0(A ∩ �) + μ0(Ac ∩ �) = μ0(A) + μ0(Ac) =
1 + c

c+1 , c = sup Ac. Again, the inequality is violated. Finally, let A be
finite (so that Ac is infinite), and take D = �. Once again, μ0(�) = 1, and
μ0(A ∩ �) + μ0(Ac ∩ �) = μ0(A) + μ0(Ac) = a

a+1 + 1, a = sup A. So,
the inequality is violated. The conclusion then is that A0 = {�,�}. #

29. It is immediate since:

P(−X ≤ −m) = P(X ≥ m) ≥ 1

2
, and

P(−X ≥ −m) = P(X ≤ m) ≥ 1

2
. #

30. By symmetry, we have

P(X ≤ x) = P(−X ≤ x) = P(X ≥ −x)

= 1 − P(X < −x) ≥ 1 − P(X ≤ −x).

For x = 0, this becomes

P(X ≤ 0) ≥ 1 − P(x ≤ 0), or P(x ≤ 0) ≥ 1

2
.

Again, by symmetry,

P(X ≥ x) = P(−X ≥ x) = P(X ≤ −x).

For x = 0, this relation becomes P(X ≥ 0) = P(X ≤ 0). But P(X ≤ 0) ≥ 1
2

as already shown. Thus, P(X ≥ 0) ≥ 1
2 , and 0 is a median for X . #

31. From B ⊆ A ∪ B, we get μ0(B) ≤ μ0(A ∪ B). However, μ0(A ∪ B) ≤
μ0(A)+μ0(B) = μ0(B) (by the sub-additivity property of μ0). Thus, μ0(B) ≤
μ0(A ∪ B) ≤ μ0(B), so that μ0(A ∪ B) = μ0(B). #

32. Let N = ( f �= g), and let B ∈ B. Then f −1(B) ∈ A, by assuming that,
e.g., f is measurable. Also, g−1(B) = {[g−1(B)] ∩ N } ∪ {[g−1(B)] ∩ N c} =
{[g−1(B)] ∩ N } ∪ f −1(B) (since f = g on N c). But [g−1(B)] ∩ N ⊆ N with
μ(N ) = 0. Thus, [g−1(B)] ∩ N is in A, and hence g−1(B) is in A. It follows
that g is measurable. #

33. Indeed, B ∈ B, we have f −1(B) ⊆ A withμ[ f −1(B)] = 0, so that f −1(B) ∈ A,
and hence f is measurable. #

34. (i) We have to show that μ is nonnegative, μ(�) = 0, and μ is σ -additive.
Indeed, μ(A) = μ1(A) + μ2(A) ≥ 0; μ(�) = μ1(�) + μ2(�) = 0;
μ(
∑∞

i=1 Ai ) = μ1(
∑∞

i=1 Ai ) + μ2(
∑∞

i=1 Ai ) = ∑∞
i=1 μ1(Ai ) +∑∞

i=1
μ2(Ai ) =∑∞

i=1(μ1 + μ2)(Ai ) =∑∞
i=1 μ(Ai ).
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(ii) Suppose that, e.g., μ1 is complete, or more properly, A is complete with
respect to μ1, which means that A contains all subsets of the μ1-null sets.
So, let A ∈ A with μ(A) = 0. Then μ1(A)(= μ2(A)) = 0. Thus, for an
arbitrary B ⊆ A, we have μ1(B) ≤ μ1(A) = 0 and B ∈ A. It follows that
μ(B) ≤ μ(A) = 0, so that μ is complete. #

35. (i) Unions of any two members of C2 produce elements in C2 except for two
new elements; namely,

(A ∩ B) ∪ (Ac ∩ Bc) and (A ∩ Bc) ∪ (Ac ∩ B).

Beyond the obvious results, we have:

A ∪ (Ac ∩ B) = A ∪ B, A ∪ (Ac ∩ Bc) = A ∪ Bc;
Ac ∪ (A ∩ B) = Ac ∪ B, Ac ∪ (A ∩ Bc) = Ac ∪ Bc;
B ∪ (A ∩ Bc) = A ∪ B, B ∪ (Ac ∩ Bc) = Ac ∪ B;
Bc ∪ (A ∩ B) = A ∪ Bc, Bc ∪ (Ac ∩ B) = Ac ∪ Bc;
(A ∩ B) ∪ (Ac ∩ Bc) new element,

(A ∩ B) ∪ (Ac ∪ Bc) = (A ∩ B) ∪ (A ∩ B)c = �;
(A ∩ Bc) ∪ (Ac ∩ B) new element,

(A ∩ Bc) ∪ (Ac ∪ B) = �;
(Ac ∩ Bc) ∪ (A ∪ B) = (A ∪ B)c ∪ (A ∪ B) = �.

(ii) Closeness under complementation is immediate for all elements except,
perhaps, for the last two, each of which is the complement of the other.
Indeed,

[(A ∩ B) ∪ (Ac ∩ Bc)]c = (Ac ∪ Bc) ∩ (A ∪ B)

= [(Ac ∪ Bc) ∩ A] ∪ [(Ac ∪ Bc) ∩ B]
= (A ∩ Bc) ∪ (Ac ∩ B).

In checking closeness under unions, it suffices to restrict ourselves to form-
ing unions of two elements, one taken from each one of the classes:

{(A ∩ B) ∪ (Ac ∩ Bc), (A ∩ Bc) ∪ (Ac ∩ B)},
{A, Ac, B, Bc, A ∩ B, A ∩ Bc, Ac ∩ B, Ac ∩ Bc},

as well as any two elements from the second class above. To this end, and
except for the obvious results, we have:

A ∪ [(A ∩ B) ∪ (Ac ∩ Bc)] = A ∪ (Ac ∩ Bc) = A ∪ Bc;
A ∪ [(A ∩ Bc) ∪ (Ac ∩ B)] = A ∪ (Ac ∩ B) = A ∪ B;
Ac ∪ [(A ∩ B) ∪ (Ac ∩ Bc)] = Ac ∪ (A ∩ B) = Ac ∪ B;
Ac ∪ [(A ∩ Bc) ∪ (Ac ∩ B)] = Ac ∪ (A ∩ Bc) = Ac ∪ Bc;
B ∪ [(A ∩ B) ∪ (Ac ∩ Bc)] = B ∪ (Ac ∩ Bc) = Ac ∪ B;
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B ∪ [(A ∩ Bc) ∪ (Ac ∩ B)] = B ∪ (A ∩ Bc) = A ∪ B;
Bc ∪ [(A ∩ B) ∪ (Ac ∩ Bc)] = Bc ∪ (A ∩ B) = A ∪ Bc;
Bc ∪ [(A ∩ Bc) ∪ (Ac ∩ B)] = Bc ∪ (A ∩ Bc) = Bc;
(A ∩ B) ∪ (Ac ∪ Bc) = (A ∩ B) ∪ (A ∩ B)c = �,

(A ∩ B) ∪ [(A ∩ Bc) ∪ (Ac ∩ B)] = A ∪ (Ac ∩ B) = A ∪ B;
(A ∩ Bc) ∪ (Ac ∪ B) = �,

(A ∩ Bc) ∪ [(A ∩ B) ∪ (Ac ∩ Bc)] = A ∪ (Ac ∩ Bc) = A ∪ Bc;
(Ac ∩ B) ∪ (A ∪ Bc) = �,

(Ac ∩ B) ∪ [(A ∩ B) ∪ (Ac ∩ Bc)] = Ac ∪ (A ∩ B) = Ac ∪ B;
(Ac ∩ Bc) ∪ (A ∪ B) = (A ∪ B)c ∪ (A ∪ B) = �,

(Ac ∩ Bc) ∪ [(A ∩ Bc) ∪ (Ac ∩ B)] = Bc ∪ (Ac ∩ B) = Ac ∪ Bc.

Again, except for the obvious results, we have:

(A ∪ B) ∪ [(A ∩ B) ∪ (Ac ∩ Bc)] = (A ∪ B) ∪ (Ac ∩ Bc)

= (A ∪ B) ∪ (A ∪ B)c = �;
(A ∪ Bc) ∪ [(A ∩ Bc) ∪ (Ac ∩ B)] = (A ∪ Bc) ∪ (Ac ∩ B) = �;
(Ac ∪ B) ∪ [(A ∩ Bc) ∪ (Ac ∩ B)] = (Ac ∪ B) ∪ (A ∩ Bc) = �;
(Ac ∪ Bc) ∪ [(A ∩ B) ∪ (Ac ∩ Bc)] = (Ac ∪ Bc) ∪ (A ∩ B)

= (A ∪ B)c ∪ (A ∩ B) = �. #

Chapter 3
Some Modes of Convergence of a Sequence of Random Variables
and their Relationships
1. Indeed, |Xn−X | = (Xn−X)++(Xn−X)−, so that (Xn−X)+ ≤ |Xn−X |, (Xn−

X)− ≤ |Xn − X |. Hence, for every ε > 0, μ[(Xn − X)+ ≥ ε] ≤ μ[|Xn − X | ≥
ε] −→

n→∞ 0, and likewise, μ[(Xn − X)− ≥ ε] ≤ μ[|Xn − X | ≥ ε] −→
n→∞ 0.

Next, recall that (Exercise 28, Chapter 1) that for any two r.v.s X and Y , (X +
Y )+ ≤ X+ + Y + and (X + Y )− ≤ X− + Y −. Hence

X+
n = ((Xn − X) + X)+ ≤ (Xn − X)+ + X+,

X+ = ((X − Xn) + Xn)+ ≤ (X − Xn)+ + X+
n = (Xn − X)− + X+

n ,

because, as is easily seen, (−Z)+ = Z−. Then

−(Xn − X)− ≤ X+
n − X+ ≤ (Xn − X)+,

or |X+
n − X+| ≤ (Xn − X)+ + (Xn − X)− = |Xn − X |, and therefore

μ(|X+
n − X+| ≥ ε) ≤ μ(|Xn − X | ≥ ε) −→

n→∞ 0,

so that X+
n

μ−→
n→∞ X+. Likewise, X−

n
μ−→

n→∞ X−. #


