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and this is equal to

UIADS(NADE NN (AN

with i, i2,...,1I,, ... integers > 1, and the union extends over all choices of
the sets (A, (AD), ..., (A7)¢, ... from the respective collections: (A})¢,
(Aiz)c, el (A?)C, ..., 1 = 1,2,...,n,... However, these choices produce
No x Ng x ... x Ny x... = NONO = N where Ny and N are the cardinal

numbers of a countable set and of the continuum, respectively. Thus, there are
uncountable members in the union, and hence the union need not be in A. In
other word, A€ need not be in A, so that .4 need not be a o-field.

Remark: For the justification of the equality, asserted in the derivations related to
A€, refer to the remark following the proof of Exercise 41. #

Chapter 2
Definition and Construction of a Measure and its Basic Properties

1.

2.

If Q is finite, then pu is > 0, u(®@) = 0 and finitely additive (since there are

only finitely many subsets of €2). Thus, u is a measure, and also finite. If 2 is

denumerable, Q = {wi, w,...},then u > 0, u(®@) = 0, and if A,,n > 1,

are # @ and pairwise disjoint, then (Y} o | Ay) = coand Y > | u(A,) = 00

since each term is > 1. Thus, u is a measure. It is o -finite, since Q2 = Z;il {w,}

and u({w,}) = 1 (finite). #

(i) LetA; €C,i=1,....,n,AiNAj =@,i # j,andset A =) 7 | A,
so that A € C. Then either A is finite or A€ is finite. If A is finite, then all
A;,i = 1,...,n, are finite, and therefore P(A) =0=0+ ... + 0 =
P(A1) 4+ ... + P(Ay,). If A€ is finite, then A is not finite and hence at
least one of Ay, ..., A, is not finite; call A;, such an event. We claim
that A;, is unique. Indeed, if A; and A;,i # j, are not finite, then Al?
and A; are finite. Since A; N A; = Q, it follows that A; C A; and
hence A; is finite, a contradiction. Then Y 7, P(A;) = P(4;) = 1
(since P(A;) = 0,i # iop, as being all finite), and P(A) = 1. Hence
P(A) =Y P(A)).
(i) Let Q = {w),wy,...} and take A; = {w;}, so that A; N A; = @,

i # j,and P(A;) = 0 forall i. However, P (Y2, A;) (= P(Q) =1
since 72, A; is infinite (and (}_7_, A,-)C = (@ finite). Therefore
P(X2 A))=1#0=3, P(A),and P is not o-additive.
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(iii) LetA, €Cn>1,A;NAj=0@,i # j,andset A= 7, A, so that
A € C. Then either A is finite or A€ is finite. If A is finite, then all A,;s are
finite (indeed, A is only the sum of finitely many of the A,s) and hence
P(A,) = 0 for all n, and also P(A) = 0. Thus, P(A) = Zf’il P(A,)
(actually, the o-additivity here degenerates to finite additivity). If A€ is
finite, then A is infinite. Since 2 is uncountable, it follows that at least
one of the A,s is infinite, because otherwise A would be countable (so
that A + A° = Q is countable, a contradiction) ; call A, such an event.
We claim that A, is unique. Indeed, if A; and A;,i # j, are infinite,
then A and A; are finite. Since A; N A; = ©, it follows that A; C A?
and hence A; is finite, a contradiction. Then Zflozl P(A,) =P(Ay) =1
(since P(A,) = 0,n # ng, as being all finite), and P(A) = 1. Hence
P(A) =Y 02, P(Ay).

Finally, it is clear that P(A) > 0, P(®) = 0 and P(£2) = 1. These prop-
erties along with the o-additivity just established make P a probability
measure. #

3. Clearly, P(A) > 0, P(®) = 0 and P(R2) = 1 since Q¢ = @ countable. It
remains to establish o-additivity. Let A, € C,n > 1, A; NA; = @,i # j, and
set A = U2 | Ay. Since A € C, it follows that either A is countable or A is
countable. If A is countable, then all A, s are countable, and hence P(A) = 0 and
P(A,) =0,n > 1,so that P(A) = Y o2, P(Ap). If A€ is countable, then A is
uncountable, and therefore at least one of the A, s is uncountable; call A, such an
event. We claim that A, is unique. Indeed, if A; and A, i # j, are uncountable,
then A¢ and A? are countable. Since A; N A; = @, it follows that A; C A?
and hence A; is countable, a contradiction. Then Z;’lozl P(A,) = P(A,) =1
(since P(A;) = 0,1 # ng, as being all countable), and P(A) = 1. Hence
P(A) =32 P(An). #

4. P(A,) = 1 if and only if P(A{) = 0, which implies that P (U;’lilAfl) <
YR LP(AY) = 0 ie, P(UX,AS) = 0 or P[(N,4,)°] = 0,
and hence P (N2, A,) = 1. #

5. Foreachn > 2, there are at most n — 1 events A;s for which P(A;) > %, because
otherwise, we could choose n events with P(4;;) > %,so that Z’}zl P(A;;) > L.
However, 3_; A;; € Qand }7_, P(A;)) = P (Z?:l Aij) (by pairwise
disjointness), and this is < P(2) = 1, a contradiction. Thus, if I, = {i €
I, P(A;) > %},thenthecardinalityofl,, is<n—1.Setlp ={i € I, P(A;) > 0}.
Then, clearly, Iy = U;’lozzl,,, and since each I,, is finite, Iy is countable. #

6. Clearly, u(A) > 0 and u(@) = 0. To establish o-additivity. To this end, let
Ay e A,AiNAj=@,i # j,andset A=) 2| Ay. Then:

A=Y pa=Y_ Y pa=Y wA).#
i=1

wp €A i=1 wy€A;
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10.

. ,uo is an outer measure; i.e., ,uo(®)

. Let Q4 = {wys; pn > 0}. Then the atoms are those A which are of the form:

A={w,JUN,where o C N CQ— Q. #

* M(li—mnﬁooA") = /"l’( Zil ?inAi) = M(limnﬁoom?inAi) = limy oo

w (N2, A;) < lim,_, o u(Ay) since N2 A; © A, Next, p (limy—00Ay) =
w (N2 U2 A) = p(limyooUR Aj) = limy—oo (U2, A;), provided
n (U?i,,Ai) < oo for some 7, and this is > 1lim,,— oot (A,) since UX, Ai 2 Ap #

= 0,10 is 1, and u is sub-o-additive,
because: (@) = Ip(w) = 0; A € B implies 14(wp) < Ip(wp), so that
10(A) = Ia(wo) < Ip(wo) = puO(B); clearly, Iue 4, (wo) < Y72, Ia; (o), 50
that 0 (U2 Ai) = Tue 4, (00) < 352 Ta, (w0) = 372 nO(A). #

That ,LLO(®) = O and % are obvious. Denote by C; the i-th column,i =1, ..., 10,
and let A, € Q,n > 1. To show u® (Up=14,) < Y ,o; nO(Ay). Set A =
Un>1A4, and suppose i (A) = k. Then there existk columns C;,, ..., C;, suchthat
CijﬂA # ©, j =1, ..., k. Thisimplies that there exists atleast one x; € CijﬂA
with x; € Ci_/ and x; € A, sothatx; € C,-_/ and x; € An_/,j =1,...,k, where
ni,...,n; are chosen from the set {1, 2, ...} and need not be distinct. Then
,uO(Anj) >1,j=1,...,k, and therefore:

k
k= nAn) = 3 nAnp) or i (,}31 An> <D nl(An). #

j=1 n>1 n>1
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In the first place, it is clear that ©*(@) = 0 and w*(2) = 1. Next, let
© C A C Q. The only covering of A by member of F is €2, so that
w*(A) = 1. Thus, u*(A) = 0if A = @ and u*(A) = 1 if A # Q.

First, @ and Q are u*-measurable, and let @ C A C Q (which implies
@ C A° C Q). Then A cannot be p*-measurable. Indeed, in the required
equality u*(D) = pu*(A N D) + u*(A° N D), take D = . Then
the left-hand side is u*(D) = pu*(2) = 1, and the right-hand side is
W (ANQ) +u*(A°N Q) = u*(A) + u*(A°) = 1+ 1 = 2, and the
equality is violated. Hence A* = {@, Q}. #

C is not a field because, e.g., {w1, w2} U {w1, w3} = {w1, w2, w3} ¢ C.
Clearly, u(A) > 0 and 1 (@) = 0. The only two disjoint sets whose sum
isalsoin C are: {w1, w2} + {w3, w4} = 2, {w1, w3} + {w2, w4} = R, and,
by taking measures, we have: 3+3 = 6, 343 = 6, so that u is a measure.
OnC: u1(@) = n2(@) =0, u1(2) = u2(2) =6, u1({wr, w2}) =3 =
m2({wi, w2}, p1({wr, w3}) = 3 = wa({wr, @2}), wi1{wz, wa}) = 3 =
u2({wz, w4}), w1 ({3, w4}) = 3 = po({ws, w4}), so that oy = up on C.
Write out the subsets of €2 and their coverages by unions of members of
C with the smallest measures to get:

o) : {o1, )
@ {or, w2}
w3 @ {w], w3}
w4 : {w, w4}
{o1, w2} @ {01, @2}
{o1, w3} {w1, w3}
{w1, w4} 1 {w1, w2} Ufw, w4} U, {1, w2}
U {w3, w4}, {w1, w3} U {ws, w4},
{o1, w3} U {ws, w4}
{w2, w3} 1 {1, w2} U{wr, o3} U, {1, w2}
U {3, w4}, {01, w3} U {02, w4},
{w2, w4} U {ws3, wa}
{w2, w4} 1 {w2, w4}
{w3, w4} 1 {w3, w4}
{o1, w2, 03} 1 {o1, w2} U{wr, w3}
{o1, w2, w4} : {1, w2} U{w:, w4}
{w1, 03, w4} {01, w3} U {w), w4}

{w2, w3, w4} : {w2, w4} U {w3, w4}. Then:

e21
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(v)

13. (i)
(ii)

(iii)
(iv)

(v)

p*({w1}) = u*({on}) = " ({ws}) = u*({ws}) =3,
w* ({1, 2}) = w* ({1, 03}) = w*({w2, w4}) = w* ({3, wa}) =3,
w*({wr, w4}) = w*({w2, w3}) =6,
(w1, w2, 03}) = w* ({1, w2, w4}) = w*({w1, 03, ws})
= ({w2, w3, w4}) = 6.

By part (iv), u* # p1 # w2 because, e.g., pui({wr, wa}) = 2
wo({wy, wa}) = 4 and w*({wy, wa}) = 6, all distinct. #

Immediate.

The only partition of 2 with members in C is {A, A°} and u(A) =
w(A®) =0 (A°={0,2,4,...}).

On C, n1(@) = n2(@) = 0, and 1 (A) = pn1(A°) = u () = 0o =
p2(A) = pa(A°) = p2 ().

Let @ C B C Q. Then the only possible coverages of B by members of
C are: A, A€, Q, all of which have p-measure co. Thus, u*(B) = oo for
every B as above.

Leto C B C Q.Thenif D C Qis= @, from® = (BN®)+ (B NQ),it
follows that 0 = 0, whereas for D # @, therelation D = (BN D)+ (BN
D) implies that at least one of BN D and BN D is # @. Hence oo = oo
and the equality holds again. Since @ and 2 are always u*-measurable,
it follows that A* = P(Q). #

15. (i) To show that AAM = (A— N)U[NN(AAM)], where M C N. We have

(ii)

AAM = (AAM) N Q = (AAM) N (N U N°)
= [(AAM) N N1U[(AAM) N N]
— [N N (AAM)]U{[(A = M)U (M — A)] N N}
— [N N (AAM)] U {[(A N M) U (A N M)] N N€)
— [N N (AAM)]U (AN ME N NS U (A N M N NC)
=[NNAAM)JU AN M NN
(since M C N implies N € M€ and hence M N N = Q)
=[NN(AAM)]U (AN N°) (since N° C M)
— (A= N)U[N N (AAM)].
AUM=[(A—N)U(ANN)JUM
—(A—N)U[(ANN)U M]
— (A—N)U[(ANN)U (M N N)] (since M C N)
=(A-N)+[(AUM)NN]
— (A= N)AIN N (AU M)]
(since for Band Cwith BN C =@, B+ C = BAC).
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(iii) Let B € A*. Then B = AAM forsome A €¢ Aand M C N,N € A
with £(N) = 0. By part (i), B = AAM = (A — N)U[N N (AAM)] with
(A—N) e Aand NN(AAM) C N.Thatis, B is of the form AU M with A
replaced by A— N (a member of A) and M replaced by NN (AAM) (which
isasubsetof N with N € Aand u(N) = 0). It follows that B € A. Next, let
B e A Then B= AU M forsome A € Aandsome M C N with N € A
and u(N) = 0. By part (ii), B= AUM = (A — N)A[N N (AU M)] with
(A—N)e Aand NN(AUM) C N.Thatis, B is of the form AU M with
A replaced by A — N (a member of .4) and M replaced by N N (A U M)
(which is a subset of N € A and u(N) = 0). It follows that B € A*.
Therefore A* = A.

Note: Parts (i) and (ii) are also established by showing that each side is contained
in the other. This is done as follows.

(i) Let w belong to the left-hand side; i.e., o € AAM, so that w € A and
w ¢ M. That w ¢ M implies that either v ¢ N orw € N.If w ¢ N, then
w € (A — N), so that w belongs to the right-hand side. If w € N, then
w € [N N (AAM)], so that w belongs to the right-hand side again.
Next, let @ belong to the right-hand side. Then w € (A — N) or w €
[INN(AAM)].Ifw € (A— N),thenw € Aandw ¢ N, sothatw € A and
w ¢ M. It follows that w belongs to the left-hand side. On the other hand,
ifw e [NN(AAM)], then w € (AAM), so that w belongs to the left-hand
side again.

(ii) Let w belong to the left-hand side; i.e., ® € A U M, so that w € A and
w € M ortoboth. Letw € A. Also, eitherw € Norw ¢ N.Ifw € N, then
w € [N N (AU M)], so that w belongs to the right-hand side. If v ¢ N,
then w € (A — N), so that w belongs to the right-hand side again. Finally,
letw € M. Then w € N and hence w € [N N (A U M)], so that w belongs
to the right-hand side.
Next, let w belong to the right-hand side. Then either ® € (A — N) or
we[NN(AUM)].Letw € (A — N). Thenw € A and (w ¢ N), so that
w belongs to the left-hand side. If w € [N N (AU M)], thenw € (AU M),
so that w belongs to the left-hand side. #

16. A(= A*) # @ since, g, R=U, e A, nu(@) =0,sothat Q2 € A. Next,
for B € A to show that B¢ ¢ A. Now B ¢ f_limpliesB =AUM,Ac A,
M C N € A, u(N) = 0. Then

BS = (AU M)® = A° N M€
=A°N[M°N(NUN]
— AN [(M° N N)U (M€ NN
=AN[(M° N N)UNC] (since M C N implies N° C M)
— (AN N) U (N N M€ N AS)
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17.

with AN N¢ € Aand NN M N A C N.Thatis, B¢ is of the form A UM with
A (a member of A) replaced by AN N¢ and M (C N € A with u(N) = 0)
replacedby NNMN A€, It follows that B¢ € A. Finally, let B; € fl,i =1,2,...
Then B; = A; U M; with A; € Aand M; C N; € A with u(N;) =0,i > 1.
Therefore

1

o0 o0 o . o
U1 B; = 'Ul(Ai UM;) = (_U] A;) U (_U1 M;) with _U] Aje A
= = 1= 1= 1=

and U2 M; C U2, N;, a member of A with w(U2 N;) = 0. It follows that
U;’il B; belongs in A, and A is a o-field. #

(i) In the first place, the definition u*(AAM) = (A) implies u*(AU M) =
(1(A). Indeed, AUM = (A — N)A[N N (AU M)] with (A — N) € Aand
NN(AUM) C N € A, u(N) = 0. Therefore u*(AUM) = u(A—N) =
H(ANNS) = pn(ANN)+u(ANN) = u[(ANN)YUANN)] = n(A).
In the process of the proof, we also have seen that u(A — N) = u(A).

(ii) Asitwas justseen, u*(AUM) = u(A— N) = u(A). We show that u* so
defined on A* is well-defined. That is, if B = A{ U M| = Ay U M>, then
(A1) = 1(Az). Indeed,

Al=(A1NA)+ (AN AE) = (A1 NA)AAI N Ag)

Next, A; N A§ C M>, because x € (A N AS) implies x € Aj and x ¢ Aj,
hence x € (A1 UM;) and x ¢ Ay, sothatx € B and x ¢ Aj. This implies
thatx € (A2UM3)andx ¢ As,sothatx € M;.Thus, AjNAS € M C N,.
From this and the fact that B = (A} N A2)A(A; N A9), it follows that
w*(B) = u(A; NAz) (= u(Ay)). Likewise, Ay = (A1 NA2)A(A] N Az)
with A? N Ay € My C Ny, sothat u*(B) = u(A; N Az) (= n(Ap)). It
follows that ;1 (A1) = w(A») and u* is well-defined.

(iii) Clearly, u*(@) = u*(@AQ@) = (@) = 0, and w*(A U M) = u(A) (as
was seen in part (i)) and this is > 0. Finally, let B; € Ai= 1,2,...,B;N
Bj=0,i#j. ThenB;=A;UM;, Bj =A; UMj, and

Q=B NBj=ANAHUMA NM)H UM NA;)UM; NM;),

so that A; N A; = @. Therefore
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It follows that ;* is a measure on A(= A*). #

(i) Let B € C and suppose that B = A for some A € A. Then B = AAQ
with @ € A and u(@) = 0, so that B € A*. If B C N for some N € A
with u(N) = 0, we have B = BAQ with @ € Aand B € N € A with
w(N) = 0, so that B € A*. Thus C € A*.

(i) Cc A implies that a((f) = A € A*, so it suffices to show that A* C A.
Let B € A* sothat B = AAM with A € Aand M € N,N € A,
W(N) = 0. Since A = AAQ, iE follows that A € C and hence A € A.
Also, M = @AM, sothat M € C and hence M € A. Thus, A, M € Aand
therefore AAM € Aor B € A. #

LetQ = {w1, wy, w3, wa},andlet A = {@, {w1, w2}, {w3, w4}, {w1, w2, w3, w4}}.
Then Ais, trivially, ao-field. On A, define u as follows: u(@) = 0 = u({w1, w2}),
n({ws, wg}) = p({wy, wa, w3, wa}) = 1. Then, clearly, © is a measure on .A.
But {w} C {w1, @2} € A with u({w1, w2}) = 0 whereas {w;} ¢ A. #

Recall that MO is an outer measure on P(2) if M0(®) =0, ,uo is 1 and sub-o-
additive. Now, let N € A° with MO(N ) = 0, and let M be an arbitrary subset
of N. To show that M e A°. It suffices to show that ,uO(D) > MO(M N D) +
/LO(MC N D) forevery D C Q. We have: M € N,hence M N D € NN D and
w(M N D)y <u(NND)=0,sothat u°(M N D) = 0. Next, M°ND C D
and n0(M¢ N D) < u%(D), so that u%(D) > u®(M N D) + (M N D) for
every D C Q. #

On B, define p in the following manner: ©(B) = number of integers in B.
Then, clearly, u is a measure satisfying the condition pw(finite interval) < oo.
Next, let x,, 1 —2, so that u((x,, 0]) = 3 for all sufficiently large n, and hence
F(x;,) = c—3 for all sufficiently large n. But F.(—2) = c—u((—2,0]) = c—2.
Hence F, is not left-continuous. #

Indeed, if « were additive, then ¢ = © (@) = u(@U Q) = u (@) + (@) = 2c,
so that 2 = 1, a contradiction. #

For n = 2, let 1 and u, be o-finite, and let {Al, Aé, ...} and {Az, A%, ...} be
the associated partitions for which /,Ll(Ail) < 00, ,uz(Al.z) < 00,1 > 1. Then
{Al N A%, i, j = 1} is a partition of  and u(A] N A%) = pui(A} N A%) +
pa(AlN A%) < 00,i,j > 1,so0 that u is o-finite.

Next, assume the assertion to be true for n = k and we will establish it for
n = k + 1. By setting uo = w1 + ... + ur, we have that both po and pgy1
are o-finite, and let {B;, i > 1} and {Af‘“, i > 1} be the associated partitions
for which 11o(B;) < 00, tit1(AFT!) < 00,i > 1. Then {B; mA’;“, i,j>1}

e25
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is a partition of ©, and p0(B; N A™!) < uo(Bi) < o0, pry1 (B N AST!) <
MkH(A’;“) < 00,i,j > 1. Thus,
(14 A DB N AT = (4 ) (B0 AT +
i1 (Bi ﬂAI;H) <00, i,j > 1, sothat
U1+ ...+ (41 is o-finite. #

24. (i) Clearly, (AN B°)U(A°NB) = AAB = (AU B) — (AN B). Hence
P[(ANB°)U(A°NB)] = P[(AUB) — (AN B)]
=P(AUB)— P(ANB) (since ANBC AUB)
= P(A)+ P(B)— P(ANB) — P(ANB)
= P(A)+ P(B) —2P(AN B).

(ii) We will use the induction hypothesis.
For n = 2, we have:

P(A1U Az) = P(A)) + P(A2) — P(A1 N Ap),

so that

P(A1NAy) =P(A))+ P(Ay) — P(A1 U Ay)
P(Ay) + P(Ay) — 1.

v

Next, assume it to be true for n = k and establish it for n = k + 1. Indeed,

P(A1N...NAk+1) = P[(A1N...NA) N Ag41]
>PAIN...NAY)+ P(Agy1) — 1

k

D P(A) = (k— 1)+ P(Arg1) — 1

i=1

k+1

=) P(A)—[(k+1)—1].#

i=1

v

25. lim, , A, = U2, N Ap = U {wr} = {wo}, limyoodp = N2, UX
A = NP2 {1, w2, w3} = {@1, w2, w3}, so that P(lim,, , (A,) = P({w2}) =
1. P(lim,y—00An) = P({w1, w2, @3}) = {5; also, P(Azu—1) = P({w1, m2}) =
3» P(A2) = P(lwy, 3) = $, so that lim, P(4,) = 5 and lim,,o

n—> 00
P(A,) = %. Observe that

1 1
P(li_mAn):_#_zli_mP(An)’
n—oo 3 2 n—>oo
and
— 7 8 ——
P(lim A,) = — # - = lim P(A,). #
n—00 10 5 n—00
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If {w;} € A for all w;, then, clearly, every subset of Q2 is in .4, so that
A = P(2). On the other hand, if A = P(£2), then all subjects of 2 are in
A, and in particular, so are {w;} for all w;s.

It is immediate. #

That u(A) > 0 and u(®@) = 0 are immediate. Next, let Ay, ..., A, be
pairwise disjoint. Then to show that . (3"7_; A;) = D1, n(A;). If atleast
one of the A;s is infinite, then ) ;| A; is infinite, so that u(3_j_; A;) =
0o. Also, at least one of the terms on the right-hand side is oo, so that
> i_1 m(A;) = oo. On the other hand, if all Ay, ..., A, are finite, then
Y ', A is finite and hence u(}_7_; A;) = 0. The right-hand side is also
equal to O since each term is 0. Next, u is not o-additive, because if all
A;s are finite, then ) ;2 A; is infinite, so that u(} ;2 A;) = 0o, whereas
S5 A = Y50 = 0.

Clearly, @ = U2 | Ay, where A, = {w1,...,w,}, so that A, C A,y
n > 1,and u(A,) = 0 for all n. Since u(A,) = 0,n > 1, it follows that
n(AS) = oo forall n. #

We have to prove that u°(@) = 0, u°(A) < u°(B) for A ¢ B, and u°
is a sub-o-additive. That 1°(@) = 0 holds by the definition of x°. Next,
suppose that A C B. There are three cases to consider. Let B be finite.
Then A is finite, and p0(A) = =% < 325 = u(B) since a < b. Let B
be infinite but A be finite. Then u(A) = ;%47 < 1 = u°(B). Finally, let
both A and B be infinite. Then u°(A) =1 < 1 = u%(B).

Now to establish sub-o -additivity:

o
0, 0
n(U An) < ; 1O (An).
Suppose that at least one of the A,s is infinite, e.g., A,,. Then the union
U | A, is infinite, and hence MO(U;:‘;IA,I) = 1, whereas ) 7, ul(A,) >
1, since u°(A,,) = 1 and u°(A,) > 0,n > 1. Next, let all A, be finite
and # @. Then U72 | A, is infinite, so that MO(UZOZIAn) = 1. As for the
right-hand side, u%(A,) = %+ > 1 for all n, so that 35| u%(A,) =

ap+1
oo. Finally, suppose that only finitely many of the A,s are finite, e.g.,
Ay, ..., Ay, Then, clearly, sup(A,, U...UA,) < supA,, +...+

sup Ay, , so that ,uO(U;’lozlAn) < Zflozl MO(A,,). Therefore ,uo is an outer
measure.
By Remark 6(i), A is u-measurable if

1o (D) > %A N D)+ u°(A° N D) for every D C Q.

Also, by Remark 6(ii), @ and Q are 1%-measurable, so to investigate the
last inequality for @ C A C 2. Consider the following possible cases.
Let both A and A€ be infinite, and take D = . Then MO(Q) = 1, but
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nOANQ) + uA°NQ) = u0A) + u®(A°) = 141 = 2, so that the
inequality is violated. Let A be infinite but A€ be finite, and take D = Q.
Then () = 1, but (A N Q) + (A N Q) = u’(A) + u°(A9) =
1+ H_Ll, ¢ = sup A€. Again, the inequality is violated. Finally, let A be
finite (so that A is infinite), and take D = €. Once again, ,uO(Q) =1,and
AN Q)+ 1A N Q) = uO(A) + u(A°) = ;45 + 1,a = sup A. So,
the inequality is violated. The conclusion then is that 4y = {@, Q}. #

29. Itis immediate since:

P(—X <—m)=P(X >m) > —, and

P(~X > -m)=P(X <m)> . #

=N =

30. By symmetry, we have

P(X <x)=P(-X <x)=P(X > —x)
=1-P(X <—-x)>1—P(X < —x).

For x = 0, this becomes

N =

PX=0)=1-Px=0), or Px<0) =

Again, by symmetry,

P(X>x)=P(—X >x) = P(X < —x).

=

For x = 0, this relation becomes P(X > 0) = P(X < 0). But P(X <0) >
as already shown. Thus, P(X > 0) > l, and O is a median for X. #

31. From B € A U B, we get u°(B) < u°(A U B). However, u’(A U B) <
u(A)+ u(B) = u°(B) (by the sub-additivity property of 1°). Thus, u°(B) <
u®(A U B) < u%(B), so that u’(A U B) = u°(B). #

32. Let N = (f # g),and let B € B. Then f~!(B) € A, by assuming that,
e.g., f is measurable. Also, g~!(B) = {[g"'(B)]N N} U {[g"'(B)] N N¢} =
{le""(B)INN}U f~1(B) (since f = g on N°). But [g"'(B)]N N C N with
w(N) = 0. Thus, [¢~'(B)] N N is in A, and hence g~ (B) is in A. It follows
that g is measurable. #

33. Indeed, B € B,wehave f~1(B) € Awithu[f~'(B)] = 0,sothat f~1(B) € A,
and hence f is measurable. #

34. (i) We have to show that p is nonnegative, u(@) = 0, and u is o-additive.

Indeed, (A) = pi1(A) + p2(A) > 0; w(@) = p1(0) + 2(@) = 0;
OS2 AD = (072 AD + (2 A = 27 m(A) + X7,
pa(AD) = Y02 (e + 1) (A) = Y72 (A,
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Suppose that, e.g., i1 is complete, or more properly, A is complete with
respect to i1, which means that A contains all subsets of the w-null sets.
So, let A € A with u(A) = 0. Then 1 (A)(= u2(A)) = 0. Thus, for an
arbitrary B C A, we have y1(B) < u1(A) = 0and B € A. It follows that
w(B) < u(A) =0, so that p is complete. #

Unions of any two members of C, produce elements in C; except for two

new elements; namely,

(ANB)U(A°N B and (AN B)U (AN B).

Beyond the obvious results, we have:
AU(A°NB)=AUB,AU(A°NB°) = AU BS;
A°U(ANB)=A“UB,A°U(ANB°) = A°U B
BU(ANBY)=AUB,BU(A°NB°) = A°UB;
B°U(ANB)=AUB, B°U(A°NB) = AU B
(AN B)U(A° N B° new element,

(ANB)U(A°UB°) =(ANB)U(ANB)  =Q;
(AN B) U (A° N B) new element,
(ANBY)U(A°UB) =Q;
(A“NBY)U(AUB)=(AUB)U(AUB) = Q.

Closeness under complementation is immediate for all elements except,

perhaps, for the last two, each of which is the complement of the other.

Indeed,

[(ANB)U(A°N B9 = (A°UB°)N(AUB)
=[(A°UB°)NAJU[(A°U B°) N B]
= (AN B°)U(A°N B).

In checking closeness under unions, it suffices to restrict ourselves to form-

ing unions of two elements, one taken from each one of the classes:
{(ANB)U (A° N B), (AN B°) U (A° N B)},

{A, A°, B, B, ANB, ANB°, AN B, A°N B},

as well as any two elements from the second class above. To this end, and

except for the obvious results, we have:

AU[(ANB)U(A°NBY)]1=AU(A°N B = AU B¢,
AU[(ANB)U(A°NB)]=AU(A°NB) =AU B;
ASU[(ANB)U(A°NBY)]=A“U(ANB) = A° U B;
AU[(ANB)YU(A°NB)]=A°U(AN B = A°U B;
BU[(ANB)U(A°NB)]=BU(A°N B°) = A°U B;
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BU[(ANB)U(A°NB)]=BU(ANB‘) =AU B,
B°U[(ANB)U(A°NBY)]=B°U(ANB) =AU B¢
B°U[(ANBY)U(A°NB)]=B°U(AN B = B
(ANB)U(A°UB°)=(ANB)U(ANB) =,
(ANBY)U[(ANB)U(A°NB)]=AU(A°NB) =AU B;
(ANBYYU(A°UB) =<,
(ANB)YU(ANBYU(A°NB)]=AU(A°NB°) =AU B¢
(A°NB)U (AU B°) = Q,
(ANBY)U[(ANB)U(A°NB)]=A“U(ANB) = A° U B;
(A°NBY)U(AUB)=(AUB)°U(AUB) =9,
(A°NB)YUNANBY)YU(A°NB)] = B°U(A°N B) = A° U B".

Again, except for the obvious results, we have:
(AUB)U[(ANB)U (AN BY)] = (AUB)U (A° N B°)
=(AUB)U(AUB) = Q;
(AUBYU(ANBHYU(A°NB)=(AUB)U(A°NB) =Q;
(A“UB)U[(ANBYU(A°NB)=(A“UB)U(ANB°) = Q;
(A“UB)YU(ANB)U (AN B)] = (A°UB)U(ANB)
=(AUB)XU(ANB)=Q. #

Chapter 3
Some Modes of Convergence of a Sequence of Random Variables
and their Relationships

1. Indeed, | X,—X| = (X,—X)T+(X,,—X)",sothat (X,,— X)" < |X,,—X|, (X,—
X)™ <|X, — X|. Hence, forevery e > 0, u[(X, — X)T > el < u[| X, — X| >
e] —> 0, and likewise, u[(X,;, — X)™ > ¢e] < u[|X, — X| =] — 0.
n— 00 n—oo

Next, recall that (Exercise 28, Chapter 1) that for any two r.v.s X and Y, (X +
Y)VP<Xt4+Ytand(X+Y)" <X + Y .Hence

Xy =X =X+ X" < Xy ="+ X7,
XT=((X=-X)+X)T =X =X)"+ X=X, - X)” + X,
because, as is easily seen, (—Z)" = Z~. Then
—(X, = X)T < X5 - Xt < (X, - X7,
or [ X;) — XT| < (Xp — X))t + (Xn — X)” = |X, — X, and therefore
pAUXy = XT1 2 8) < u(1 X, = Xz 8) — 0,

so that X;- 5> XT. Likewise, X, —> X~ #
n— 00 n—o0



