$$
\begin{aligned}
= & \bigcap_{i=1}^{\infty}\left[\left(A_{i}^{1}\right)^{c} \cup\left(A_{i}^{2}\right)^{c} \cup \ldots\right] \\
= & {\left[\left(A_{1}^{1}\right)^{c} \cup\left(A_{1}^{2}\right)^{c} \cup \ldots\right] \cap\left[\left(A_{2}^{1}\right)^{c} \cup\left(A_{2}^{2}\right)^{c} \cup \ldots\right] } \\
& \cap \ldots \cap\left[\left(A_{n}^{1}\right)^{c} \cup\left(A_{n}^{2}\right)^{c} \cup \ldots\right] \cap \ldots,
\end{aligned}
$$

and this is equal to

$$
\cup\left[\left(A_{1}^{i_{1}}\right)^{c}\left(\cap A_{2}^{i_{2}}\right)^{c} \cap \ldots \cap\left(A_{n}^{i_{n}}\right)^{c} \cap \ldots\right]
$$

with $i_{1}, i_{2}, \ldots, i_{n}, \ldots$ integers ≥ 1, and the union extends over all choices of the sets $\left(A_{1}^{i_{1}}\right)^{c},\left(A_{2}^{i_{2}}\right)^{c}, \ldots,\left(A_{n}^{i_{n}}\right)^{c}, \ldots$ from the respective collections: $\left(A_{i}^{1}\right)^{c}$, $\left(A_{i}^{2}\right)^{c}, \ldots,\left(A_{i}^{n}\right)^{c}, \ldots, i=1,2, \ldots, n, \ldots$ However, these choices produce $\mathbb{N}_{0} \times \mathbb{N}_{0} \times \ldots \times \mathbb{N}_{0} \times \ldots=\mathbb{N}_{0}^{\mathbb{N}_{0}}=\mathbb{N}$ where \mathbb{N}_{0} and \mathbb{N} are the cardinal numbers of a countable set and of the continuum, respectively. Thus, there are uncountable members in the union, and hence the union need not be in \mathcal{A}. In other word, A^{c} need not be in \mathcal{A}, so that \mathcal{A} need not be a σ-field.
Remark: For the justification of the equality, asserted in the derivations related to A^{c}, refer to the remark following the proof of Exercise 41. \#

Chapter 2

Definition and Construction of a Measure and its Basic Properties

1. If Ω is finite, then μ is $\geq 0, \mu(\varnothing)=0$ and finitely additive (since there are only finitely many subsets of Ω). Thus, μ is a measure, and also finite. If Ω is denumerable, $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$, then $\mu \geq 0, \mu(\varnothing)=0$, and if $A_{n}, n \geq 1$, are $\neq \oslash$ and pairwise disjoint, then $\mu\left(\sum_{n=1}^{\infty} A_{n}\right)=\infty$ and $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=\infty$ since each term is ≥ 1. Thus, μ is a measure. It is σ-finite, since $\Omega=\sum_{n=1}^{\infty}\left\{\omega_{n}\right\}$ and $\mu\left(\left\{\omega_{n}\right\}\right)=1$ (finite). \#
2. (i) Let $A_{i} \in \mathcal{C}, i=1, \ldots, n, A_{i} \cap A_{j}=\oslash, i \neq j$, and set $A=\sum_{i=1}^{n} A_{i}$, so that $A \in \mathcal{C}$. Then either A is finite or A^{c} is finite. If A is finite, then all $A_{i}, i=1, \ldots, n$, are finite, and therefore $P(A)=0=0+\ldots+0=$ $P\left(A_{1}\right)+\ldots+P\left(A_{n}\right)$. If A^{c} is finite, then A is not finite and hence at least one of A_{1}, \ldots, A_{n} is not finite; call $A_{i_{0}}$ such an event. We claim that $A_{i_{0}}$ is unique. Indeed, if A_{i} and $A_{j}, i \neq j$, are not finite, then A_{i}^{c} and A_{j}^{c} are finite. Since $A_{i} \cap A_{j}=\varnothing$, it follows that $A_{i} \subset A_{j}^{c}$ and hence A_{i} is finite, a contradiction. Then $\sum_{i=1}^{n} P\left(A_{i}\right)=P\left(A_{i_{0}}\right)=1$ (since $P\left(A_{i}\right)=0, i \neq i_{0}$, as being all finite), and $P(A)=1$. Hence $P(A)=\sum_{i=1}^{n} P\left(A_{i}\right)$.
(ii) Let $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$ and take $A_{i}=\left\{\omega_{i}\right\}$, so that $A_{i} \cap A_{j}=\varnothing$, $i \neq j$, and $P\left(A_{i}\right)=0$ for all i. However, $P\left(\sum_{i=1}^{\infty} A_{i}\right)(=P(\Omega))=1$ since $\sum_{i=1}^{\infty} A_{i}$ is infinite (and $\left(\sum_{i=1}^{n} A_{i}\right)^{c}=\oslash$ finite). Therefore $P\left(\sum_{i=1}^{\infty} A_{i}\right)=1 \neq 0=\sum_{i=1}^{\infty} P\left(A_{i}\right)$, and P is not σ-additive.
(iii) Let $A_{n} \in \mathcal{C}, n \geq 1, A_{i} \cap A_{j}=\oslash, i \neq j$, and set $A=\sum_{n=1}^{\infty} A_{n}$, so that $A \in \mathcal{C}$. Then either A is finite or A^{c} is finite. If A is finite, then all $A_{n} \mathrm{~s}$ are finite (indeed, A is only the sum of finitely many of the $A_{n} \mathrm{~s}$) and hence $P\left(A_{n}\right)=0$ for all n, and also $P(A)=0$. Thus, $P(A)=\sum_{n=1}^{\infty} P\left(A_{n}\right)$ (actually, the σ-additivity here degenerates to finite additivity). If A^{c} is finite, then A is infinite. Since Ω is uncountable, it follows that at least one of the $A_{n} \mathrm{~s}$ is infinite, because otherwise A would be countable (so that $A+A^{c}=\Omega$ is countable, a contradiction) ; call $A_{n_{0}}$ such an event. We claim that $A_{n_{0}}$ is unique. Indeed, if A_{i} and $A_{j}, i \neq j$, are infinite, then A_{i}^{c} and A_{j}^{c} are finite. Since $A_{i} \cap A_{j}=\varnothing$, it follows that $A_{i} \subset A_{j}^{c}$ and hence A_{i} is finite, a contradiction. Then $\sum_{n=1}^{\infty} P\left(A_{n}\right)=P\left(A_{n_{0}}\right)=1$ (since $P\left(A_{n}\right)=0, n \neq n_{0}$, as being all finite), and $P(A)=1$. Hence $P(A)=\sum_{n=1}^{\infty} P\left(A_{n}\right)$.
Finally, it is clear that $P(A) \geq 0, P(\oslash)=0$ and $P(\Omega)=1$. These properties along with the σ-additivity just established make P a probability measure. \#
3. Clearly, $P(A) \geq 0, P(\oslash)=0$ and $P(\Omega)=1$ since $\Omega^{c}=\varnothing$ countable. It remains to establish σ-additivity. Let $A_{n} \in \mathcal{C}, n \geq 1, A_{i} \cap A_{j}=\oslash, i \neq j$, and set $A=\cup_{n=1}^{\infty} A_{n}$. Since $A \in \mathcal{C}$, it follows that either A is countable or A^{c} is countable. If A is countable, then all A_{n} s are countable, and hence $P(A)=0$ and $P\left(A_{n}\right)=0, n \geq 1$, so that $P(A)=\sum_{n=1}^{\infty} P\left(A_{n}\right)$. If A^{c} is countable, then A is uncountable, and therefore at least one of the A_{n} s is uncountable; call $A_{n_{0}}$ such an event. We claim that $A_{n_{0}}$ is unique. Indeed, if A_{i} and $A_{j}, i \neq j$, are uncountable, then A_{i}^{c} and A_{j}^{c} are countable. Since $A_{i} \cap A_{j}=\oslash$, it follows that $A_{i} \subset A_{j}^{c}$ and hence A_{i} is countable, a contradiction. Then $\sum_{n=1}^{\infty} P\left(A_{n}\right)=P\left(A_{n_{0}}\right)=1$ (since $P\left(A_{i}\right)=0, i \neq n_{0}$, as being all countable), and $P(A)=1$. Hence $P(A)=\sum_{n=1}^{\infty} P\left(A_{n}\right)$. \#
4. $P\left(A_{n}\right)=1$ if and only if $P\left(A_{n}^{c}\right)=0$, which implies that $P\left(\cup_{n=1}^{\infty} A_{n}^{c}\right) \leq$ $\sum_{n=1}^{\infty} P\left(A_{n}^{c}\right)=0$; i.e., $P\left(\cup_{n=1}^{\infty} A_{n}^{c}\right)=0$ or $P\left[\left(\cap_{n=1}^{\infty} A_{n}\right)^{c}\right]=0$, and hence $P\left(\cap_{n=1}^{\infty} A_{n}\right)=1$. \#
5. For each $n \geq 2$, there are at most $n-1$ events A_{i} s for which $P\left(A_{i}\right)>\frac{1}{n}$, because otherwise, we could choose n events with $P\left(A_{i_{j}}\right)>\frac{1}{n}$, so that $\sum_{j=1}^{n} P\left(A_{i_{j}}\right)>1$. However, $\sum_{j=1}^{n} A_{i_{j}} \subseteq \Omega$ and $\sum_{j=1}^{n} P\left(A_{i_{j}}\right)=P\left(\sum_{j=1}^{n} A_{i_{j}}\right)$ (by pairwise disjointness), and this is $\leq P(\Omega)=1$, a contradiction. Thus, if $I_{n}=\{i \in$ $\left.I ; P\left(A_{i}\right)>\frac{1}{n}\right\}$, then the cardinality of I_{n} is $\leq n-1$. Set $I_{0}=\left\{i \in I ; P\left(A_{i}\right)>0\right\}$. Then, clearly, $I_{0}=\cup_{n=2}^{\infty} I_{n}$, and since each I_{n} is finite, I_{0} is countable. \#
6. Clearly, $\mu(A) \geq 0$ and $\mu(\oslash)=0$. To establish σ-additivity. To this end, let $A_{n} \in \mathcal{A}, A_{i} \cap A_{j}=\oslash, i \neq j$, and set $A=\sum_{n=1}^{\infty} A_{n}$. Then:

$$
\mu(A)=\sum_{\omega_{n} \in A} p_{n}=\sum_{i=1}^{\infty} \sum_{\omega_{n} \in A_{i}} p_{n}=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

7. Let $\Omega_{+}=\left\{\omega_{n} \mathrm{~s} ; p_{n}>0\right\}$. Then the atoms are those A which are of the form: $A=\left\{\omega_{n}\right\} \cup N$, where $\oslash \subseteq N \subseteq \Omega-\Omega_{+}$. $\#$
8. $\mu\left(\underline{\lim }_{n \rightarrow \infty} A_{n}\right)=\mu\left(\cup_{n=1}^{\infty} \cap_{i=n}^{\infty} A_{i}\right)=\mu\left(\lim _{n \rightarrow \infty} \cap_{i=n}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty}$ $\mu\left(\cap_{i=n}^{\infty} A_{i}\right) \leq \underline{\lim }_{n \rightarrow \infty} \mu\left(A_{n}\right)$ since $\cap_{i=n}^{\infty} A_{i} \subseteq A_{n}$. Next, $\mu\left(\overline{\lim }_{n \rightarrow \infty} A_{n}\right)=$ $\mu\left(\cap_{n=1}^{\infty} \cup_{i=n}^{\infty} A_{i}\right)=\mu\left(\lim _{n \rightarrow \infty} \cup_{i=n}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(\cup_{i=n}^{\infty} A_{i}\right)$, provided $\mu\left(\cup_{i=n}^{\infty} A_{i}\right)<\infty$ for some n, and this is $\geq \varlimsup_{n \rightarrow \infty} \mu\left(A_{n}\right)$ since $\cup_{i=n}^{\infty} A_{i} \supseteq A_{n}$. \#
9. μ^{0} is an outer measure; i.e., $\mu^{0}(\varnothing)=0, \mu^{0}$ is \uparrow, and μ^{0} is sub- σ-additive, because: $\mu^{0}(\oslash)=I_{\oslash}(\omega)=0 ; A \subseteq B$ implies $I_{A}\left(\omega_{0}\right) \leq I_{B}\left(\omega_{0}\right)$, so that $\mu^{0}(A)=I_{A}\left(\omega_{0}\right) \leq I_{B}\left(\omega_{0}\right)=\mu^{0}(B)$; clearly, $I_{\cup_{i=1}^{\infty} A_{i}}\left(\omega_{0}\right) \leq \sum_{i=1}^{\infty} I_{A_{i}}\left(\omega_{0}\right)$, so that $\mu^{0}\left(\cup_{i=1}^{\infty} A_{i}\right)=I_{\cup_{i=1}^{\infty} A_{i}}\left(\omega_{0}\right) \leq \sum_{i=1}^{\infty} I_{A_{i}}\left(\omega_{0}\right)=\sum_{i=1}^{\infty} \mu^{0}\left(A_{i}\right)$. \#
10.

That $\mu^{0}(\oslash)=0$ and \uparrow are obvious. Denote by C_{i} the i-th column, $i=1, \ldots, 10$, and let $A_{n} \subseteq \Omega, n \geq 1$. To show $\mu^{0}\left(\cup_{n \geq 1} A_{n}\right) \leq \sum_{n \geq 1} \mu^{0}\left(A_{n}\right)$. Set $A=$ $\cup_{n \geq 1} A_{n}$ and suppose $\mu(A)=k$. Then there exist k columns $\bar{C}_{i_{1}}, \ldots, C_{i_{k}}$ such that $C_{i_{j}} \cap A \neq \oslash, j=1, \ldots, k$. This implies that there exists at least one $x_{j} \in C_{i_{j}} \cap A$ with $x_{j} \in C_{i_{j}}$ and $x_{j} \in A$, so that $x_{j} \in C_{i_{j}}$ and $x_{j} \in A_{n_{j}}, j=1, \ldots, k$, where n_{1}, \ldots, n_{k} are chosen from the set $\{1,2, \ldots\}$ and need not be distinct. Then $\mu^{0}\left(A_{n_{j}}\right) \geq 1, j=1, \ldots, k$, and therefore:

$$
k \leq \sum_{j=1}^{k} \mu^{0}\left(A_{n_{j}}\right) \leq \sum_{n \geq 1} \mu^{0}\left(A_{n_{j}}\right) \text { or } \mu^{0}\left(\bigcup_{n \geq 1} A_{n}\right) \leq \sum_{n \geq 1} \mu^{0}\left(A_{n}\right) . \#
$$

11.

(i) In the first place, it is clear that $\mu^{*}(\oslash)=0$ and $\mu^{*}(\Omega)=1$. Next, let $\oslash \subset A \subset \Omega$. The only covering of A by member of \mathcal{F} is Ω, so that $\mu^{*}(A)=1$. Thus, $\mu^{*}(A)=0$ if $A=\oslash$ and $\mu^{*}(A)=1$ if $A \neq \oslash$.
(ii) First, \oslash and Ω are μ^{*}-measurable, and let $\oslash \subset A \subset \Omega$ (which implies $\left.\oslash \subset A^{c} \subset \Omega\right)$. Then A cannot be μ^{*}-measurable. Indeed, in the required equality $\mu^{*}(D)=\mu^{*}(A \cap D)+\mu^{*}\left(A^{c} \cap D\right)$, take $D=\Omega$. Then the left-hand side is $\mu^{*}(D)=\mu^{*}(\Omega)=1$, and the right-hand side is $\mu^{*}(A \cap \Omega)+\mu^{*}\left(A^{c} \cap \Omega\right)=\mu^{*}(A)+\mu^{*}\left(A^{c}\right)=1+1=2$, and the equality is violated. Hence $\mathcal{A}^{*}=\{\varnothing, \Omega\}$. \#
12.
(i) \mathcal{C} is not a field because, e.g., $\left\{\omega_{1}, \omega_{2}\right\} \cup\left\{\omega_{1}, \omega_{3}\right\}=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\} \notin \mathcal{C}$.
(ii) Clearly, $\mu(A) \geq 0$ and $\mu(\varnothing)=0$. The only two disjoint sets whose sum is also in \mathcal{C} are: $\left\{\omega_{1}, \omega_{2}\right\}+\left\{\omega_{3}, \omega_{4}\right\}=\Omega,\left\{\omega_{1}, \omega_{3}\right\}+\left\{\omega_{2}, \omega_{4}\right\}=\Omega$, and, by taking measures, we have: $3+3=6,3+3=6$, so that μ is a measure.
(iii) On $\mathcal{C}: \mu_{1}(\oslash)=\mu_{2}(\oslash)=0, \mu_{1}(\Omega)=\mu_{2}(\Omega)=6, \mu_{1}\left(\left\{\omega_{1}, \omega_{2}\right\}\right)=3=$ $\mu_{2}\left(\left\{\omega_{1}, \omega_{2}\right\}\right), \mu_{1}\left(\left\{\omega_{1}, \omega_{3}\right\}\right)=3=\mu_{2}\left(\left\{\omega_{1}, \omega_{2}\right\}\right), \mu_{1}\left(\left\{\omega_{2}, \omega_{4}\right\}\right)=3=$ $\mu_{2}\left(\left\{\omega_{2}, \omega_{4}\right\}\right), \mu_{1}\left(\left\{\omega_{3}, \omega_{4}\right\}\right)=3=\mu_{2}\left(\left\{\omega_{3}, \omega_{4}\right\}\right)$, so that $\mu_{1}=\mu_{2}$ on \mathcal{C}.
(iv) Write out the subsets of Ω and their coverages by unions of members of \mathcal{C} with the smallest measures to get:

$$
\begin{aligned}
\omega_{1}: & \left\{\omega_{1}, \omega_{2}\right\} \\
\omega_{2}: & \left\{\omega_{1}, \omega_{2}\right\} \\
\omega_{3}: & \left\{\omega_{1}, \omega_{3}\right\} \\
\omega_{4}: & \left\{\omega_{2}, \omega_{4}\right\} \\
\left\{\omega_{1}, \omega_{2}\right\}: & \left\{\omega_{1}, \omega_{2}\right\} \\
\left\{\omega_{1}, \omega_{3}\right\}: & \left\{\omega_{1}, \omega_{3}\right\} \\
\left\{\omega_{1}, \omega_{4}\right\}: & \left\{\omega_{1}, \omega_{2}\right\} \cup\left\{\omega_{2}, \omega_{4}\right\} \cup\left\{\omega_{1}, \omega_{2}\right\} \\
& \cup\left\{\omega_{3}, \omega_{4}\right\},\left\{\omega_{1}, \omega_{3}\right\} \cup\left\{\omega_{2}, \omega_{4}\right\}, \\
& \left\{\omega_{1}, \omega_{3}\right\} \cup\left\{\omega_{3}, \omega_{4}\right\} \\
\left\{\omega_{2}, \omega_{3}\right\}: & \left\{\omega_{1}, \omega_{2}\right\} \cup\left\{\omega_{1}, \omega_{3}\right\} \cup\left\{\omega_{1}, \omega_{2}\right\} \\
& \cup\left\{\omega_{3}, \omega_{4}\right\},\left\{\omega_{1}, \omega_{3}\right\} \cup\left\{\omega_{2}, \omega_{4}\right\}, \\
& \left\{\omega_{2}, \omega_{4}\right\} \cup\left\{\omega_{3}, \omega_{4}\right\} \\
\left\{\omega_{2}, \omega_{4}\right\}: & \left\{\omega_{2}, \omega_{4}\right\} \\
\left\{\omega_{3}, \omega_{4}\right\}: & \left\{\omega_{3}, \omega_{4}\right\} \\
\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}: & \left\{\omega_{1}, \omega_{2}\right\} \cup\left\{\omega_{1}, \omega_{3}\right\} \\
\left\{\omega_{1}, \omega_{2}, \omega_{4}\right\}: & \left\{\omega_{1}, \omega_{2}\right\} \cup\left\{\omega_{2}, \omega_{4}\right\} \\
\left\{\omega_{1}, \omega_{3}, \omega_{4}\right\}: & \left\{\omega_{1}, \omega_{3}\right\} \cup\left\{\omega_{2}, \omega_{4}\right\} \\
\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}: & \left\{\omega_{2}, \omega_{4}\right\} \cup\left\{\omega_{3}, \omega_{4}\right\} . \text { Then: }
\end{aligned}
$$

$$
\begin{aligned}
& \mu^{*}\left(\left\{\omega_{1}\right\}\right)=\mu^{*}\left(\left\{\omega_{2}\right\}\right)=\mu^{*}\left(\left\{\omega_{3}\right\}\right)=\mu^{*}\left(\left\{\omega_{4}\right\}\right)=3, \\
& \mu^{*}\left(\left\{\omega_{1}, \omega_{2}\right\}\right)=\mu^{*}\left(\left\{\omega_{1}, \omega_{3}\right\}\right)=\mu^{*}\left(\left\{\omega_{2}, \omega_{4}\right\}\right)=\mu^{*}\left(\left\{\omega_{3}, \omega_{4}\right\}\right)=3, \\
& \mu^{*}\left(\left\{\omega_{1}, \omega_{4}\right\}\right)=\mu^{*}\left(\left\{\omega_{2}, \omega_{3}\right\}\right)=6, \\
& \mu^{*}\left(\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}\right)=\mu^{*}\left(\left\{\omega_{1}, \omega_{2}, \omega_{4}\right\}\right)=\mu^{*}\left(\left\{\omega_{1}, \omega_{3}, \omega_{4}\right\}\right) \\
& \quad=\mu^{*}\left(\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}\right)=6 .
\end{aligned}
$$

(v) By part (iv), $\mu^{*} \neq \mu_{1} \neq \mu_{2}$ because, e.g., $\mu_{1}\left(\left\{\omega_{1}, \omega_{4}\right\}\right)=2$, $\mu_{2}\left(\left\{\omega_{1}, \omega_{4}\right\}\right)=4$ and $\mu^{*}\left(\left\{\omega_{1}, \omega_{4}\right\}\right)=6$, all distinct. \#
13. (i) Immediate.
(ii) The only partition of Ω with members in \mathcal{C} is $\left\{A, A^{c}\right\}$ and $\mu(A)=$ $\mu\left(A^{c}\right)=0\left(A^{c}=\{0,2,4, \ldots\}\right)$.
(iii) On $\mathcal{C}, \mu_{1}(\oslash)=\mu_{2}(\oslash)=0$, and $\mu_{1}(A)=\mu_{1}\left(A^{c}\right)=\mu_{1}(\Omega)=\infty=$ $\mu_{2}(A)=\mu_{2}\left(A^{c}\right)=\mu_{2}(\Omega)$.
(iv) Let $\oslash \subset B \subset \Omega$. Then the only possible coverages of B by members of \mathcal{C} are: A, A^{c}, Ω, all of which have μ-measure ∞. Thus, $\mu^{*}(B)=\infty$ for every B as above.
(v) Let $\oslash \subset B \subset \Omega$. Then if $D \subset \Omega$ is $=\oslash$, from $\oslash=(B \cap \oslash)+\left(B^{c} \cap \oslash\right)$, it follows that $0=0$, whereas for $D \neq \oslash$, the relation $D=(B \cap D)+\left(B^{c} \cap\right.$ $D)$ implies that at least one of $B \cap D$ and $B^{c} \cap D$ is $\neq \varnothing$. Hence $\infty=\infty$ and the equality holds again. Since \oslash and Ω are always μ^{*}-measurable, it follows that $\mathcal{A}^{*}=\mathcal{P}(\Omega)$. \#
15. (i) To show that $A \triangle M=(A-N) \cup[N \cap(A \triangle M)]$, where $M \subseteq N$. We have

$$
\begin{aligned}
A \triangle M= & (A \triangle M) \cap \Omega=(A \triangle M) \cap\left(N \cup N^{c}\right) \\
= & {[(A \triangle M) \cap N] \cup\left[(A \triangle M) \cap N^{c}\right] } \\
= & {[N \cap(A \triangle M)] \cup\left\{[(A-M) \cup(M-A)] \cap N^{c}\right\} } \\
= & {[N \cap(A \triangle M)] \cup\left\{\left[\left(A \cap M^{c}\right) \cup\left(A^{c} \cap M\right)\right] \cap N^{c}\right\} } \\
= & {[N \cap(A \Delta M)] \cup\left(A \cap M^{c} \cap N^{c}\right) \cup\left(A^{c} \cap M \cap N^{c}\right) } \\
= & {[N \cap(A \triangle M)] \cup\left(A \cap M^{c} \cap N^{c}\right) } \\
& \left(\text { since } M \subseteq N \text { implies } N^{c} \subseteq M^{c} \text { and hence } M \cap N^{c}=\oslash\right) \\
= & {\left.[N \cap(A \triangle M)] \cup\left(A \cap N^{c}\right) \text { (since } N^{c} \subseteq M^{c}\right) } \\
= & (A-N) \cup[N \cap(A \triangle M)] .
\end{aligned}
$$

(ii) $\quad A \cup M=[(A-N) \cup(A \cap N)] \cup M$
$=(A-N) \cup[(A \cap N) \cup M]$
$=(A-N) \cup[(A \cap N) \cup(M \cap N)]$ (since $M \subseteq N)$
$=(A-N)+[(A \cup M) \cap N]$
$=(A-N) \Delta[N \cap(A \cup M)]$
(since for B and C with $B \cap C=\oslash, B+C=B \triangle C$).
(iii) Let $B \in \mathcal{A}^{*}$. Then $B=A \triangle M$ for some $A \in \mathcal{A}$ and $M \subseteq N, N \in \mathcal{A}$ with $\mu(N)=0$. By part (i), $B=A \Delta M=(A-N) \cup[N \cap(A \triangle M)]$ with $(A-N) \in \mathcal{A}$ and $N \cap(A \triangle M) \subseteq N$. That is, B is of the form $A \cup M$ with A replaced by $A-N$ (a member of \mathcal{A}) and M replaced by $N \cap(A \triangle M)$ (which is a subset of N with $N \in \mathcal{A}$ and $\mu(N)=0$). It follows that $B \in \overline{\mathcal{A}}$. Next, let $B \in \overline{\mathcal{A}}$. Then $B=A \cup M$ for some $A \in \mathcal{A}$ and some $M \subseteq N$ with $N \in \mathcal{A}$ and $\mu(N)=0$. By part (ii), $B=A \cup M=(A-N) \Delta[N \cap(A \cup M)]$ with $(A-N) \in \mathcal{A}$ and $N \cap(A \cup M) \subseteq N$. That is, B is of the form $A \cup M$ with A replaced by $A-N$ (a member of \mathcal{A}) and M replaced by $N \cap(A \cup M)$ (which is a subset of $N \in \mathcal{A}$ and $\mu(N)=0$). It follows that $B \in \mathcal{A}^{*}$. Therefore $\mathcal{A}^{*}=\overline{\mathcal{A}}$.

Note: Parts (i) and (ii) are also established by showing that each side is contained in the other. This is done as follows.
(i) Let ω belong to the left-hand side; i.e., $\omega \in A \triangle M$, so that $\omega \in A$ and $\omega \notin M$. That $\omega \notin M$ implies that either $\omega \notin N$ or $\omega \in N$. If $\omega \notin N$, then $\omega \in(A-N)$, so that ω belongs to the right-hand side. If $\omega \in N$, then $\omega \in[N \cap(A \triangle M)]$, so that ω belongs to the right-hand side again.
Next, let ω belong to the right-hand side. Then $\omega \in(A-N)$ or $\omega \in$ [$N \cap(A \triangle M)$]. If $\omega \in(A-N)$, then $\omega \in A$ and $\omega \notin N$, so that $\omega \in A$ and $\omega \notin M$. It follows that ω belongs to the left-hand side. On the other hand, if $\omega \in[N \cap(A \triangle M)]$, then $\omega \in(A \triangle M)$, so that ω belongs to the left-hand side again.
(ii) Let ω belong to the left-hand side; i.e., $\omega \in A \cup M$, so that $\omega \in A$ and $\omega \in M$ or to both. Let $\omega \in A$. Also, either $\omega \in N$ or $\omega \notin N$. If $\omega \in N$, then $\omega \in[N \cap(A \cup M)]$, so that ω belongs to the right-hand side. If $\omega \notin N$, then $\omega \in(A-N)$, so that ω belongs to the right-hand side again. Finally, let $\omega \in M$. Then $\omega \in N$ and hence $\omega \in[N \cap(A \cup M)]$, so that ω belongs to the right-hand side.
Next, let ω belong to the right-hand side. Then either $\omega \in(A-N)$ or $\omega \in[N \cap(A \cup M)]$. Let $\omega \in(A-N)$. Then $\omega \in A$ and $(\omega \notin N)$, so that ω belongs to the left-hand side. If $\omega \in[N \cap(A \cup M)]$, then $\omega \in(A \cup M)$, so that ω belongs to the left-hand side. \#
16. $\overline{\mathcal{A}}\left(=\mathcal{A}^{*}\right) \neq \oslash$ since, e.g., $\Omega=\Omega \cup \oslash, \Omega \in \mathcal{A}, \mu(\oslash)=0$, so that $\Omega \in \overline{\mathcal{A}}$. Next, for $B \in \overline{\mathcal{A}}$ to show that $B^{c} \in \overline{\mathcal{A}}$. Now $B \in \overline{\mathcal{A}}$ implies $B=A \cup M, A \in \mathcal{A}$, $M \subseteq N \in \mathcal{A}, \mu(N)=0$. Then

$$
\begin{aligned}
B^{c} & =(A \cup M)^{c}=A^{c} \cap M^{c} \\
& =A^{c} \cap\left[M^{c} \cap\left(N \cup N^{c}\right)\right] \\
& =A^{c} \cap\left[\left(M^{c} \cap N\right) \cup\left(M^{c} \cap N^{c}\right)\right] \\
& \left.=A^{c} \cap\left[\left(M^{c} \cap N\right) \cup N^{c}\right] \text { (since } M \subseteq N \text { implies } N^{c} \subseteq M^{c}\right) \\
& =\left(A^{c} \cap N^{c}\right) \cup\left(N \cap M^{c} \cap A^{c}\right)
\end{aligned}
$$

with $A^{c} \cap N^{c} \in \mathcal{A}$ and $N \cap M^{c} \cap A^{c} \subseteq N$. That is, B^{c} is of the form $A \cup M$ with A (a member of \mathcal{A}) replaced by $A^{c} \cap N^{c}$ and $M(\subseteq N \in \mathcal{A}$ with $\mu(N)=0$) replaced by $N \cap M^{c} \cap A^{c}$. It follows that $B^{c} \in \overline{\mathcal{A}}$. Finally, let $B_{i} \in \overline{\mathcal{A}}, i=1,2, \ldots$ Then $B_{i}=A_{i} \cup M_{i}$ with $A_{i} \in \mathcal{A}$ and $M_{i} \subseteq N_{i} \in \mathcal{A}$ with $\mu\left(N_{i}\right)=0, i \geq 1$. Therefore

$$
\bigcup_{i=1}^{\infty} B_{i}=\bigcup_{i=1}^{\infty}\left(A_{i} \cup M_{i}\right)=\left(\bigcup_{i=1}^{\infty} A_{i}\right) \cup\left(\bigcup_{i=1}^{\infty} M_{i}\right) \text { with } \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{A}
$$

and $\cup_{i=1}^{\infty} M_{i} \subseteq \cup_{i=1}^{\infty} N_{i}$, a member of \mathcal{A} with $\mu\left(\cup_{i=1}^{\infty} N_{i}\right)=0$. It follows that $\cup_{i=1}^{\infty} B_{i}$ belongs in $\overline{\mathcal{A}}$, and $\overline{\mathcal{A}}$ is a σ-field. \#
17.
(i) In the first place, the definition $\mu^{*}(A \triangle M)=\mu(A)$ implies $\mu^{*}(A \cup M)=$ $\mu(A)$. Indeed, $A \cup M=(A-N) \Delta[N \cap(A \cup M)]$ with $(A-N) \in \mathcal{A}$ and $N \cap(A \cup M) \subseteq N \in \mathcal{A}, \mu(N)=0$. Therefore $\mu^{*}(A \cup M)=\mu(A-N)=$ $\mu\left(A \cap N^{c}\right)=\mu\left(A \cap N^{c}\right)+\mu(A \cap N)=\mu\left[\left(A \cap N^{c}\right) \cup(A \cap N)\right]=\mu(A)$. In the process of the proof, we also have seen that $\mu(A-N)=\mu(A)$.
(ii) As it was just seen, $\mu^{*}(A \cup M)=\mu(A-N)=\mu(A)$. We show that μ^{*} so defined on \mathcal{A}^{*} is well-defined. That is, if $B=A_{1} \cup M_{1}=A_{2} \cup M_{2}$, then $\mu\left(A_{1}\right)=\mu\left(A_{2}\right)$. Indeed,

$$
A_{1}=\left(A_{1} \cap A_{2}\right)+\left(A_{1} \cap A_{2}^{c}\right)=\left(A_{1} \cap A_{2}\right) \Delta\left(A_{1} \cap A_{2}^{c}\right)
$$

Next, $A_{1} \cap A_{2}^{c} \subseteq M_{2}$, because $x \in\left(A_{1} \cap A_{2}^{c}\right)$ implies $x \in A_{1}$ and $x \notin A_{2}$, hence $x \in\left(A_{1} \cup M_{1}\right)$ and $x \notin A_{2}$, so that $x \in B$ and $x \notin A_{2}$. This implies that $x \in\left(A_{2} \cup M_{2}\right)$ and $x \notin A_{2}$, so that $x \in M_{2}$. Thus, $A_{1} \cap A_{2}^{c} \subseteq M_{2} \subseteq N_{2}$. From this and the fact that $B=\left(A_{1} \cap A_{2}\right) \Delta\left(A_{1} \cap A_{2}^{c}\right)$, it follows that $\mu^{*}(B)=\mu\left(A_{1} \cap A_{2}\right)\left(=\mu\left(A_{1}\right)\right)$. Likewise, $A_{2}=\left(A_{1} \cap A_{2}\right) \Delta\left(A_{1}^{c} \cap A_{2}\right)$ with $A_{1}^{c} \cap A_{2} \subseteq M_{1} \subseteq N_{1}$, so that $\mu^{*}(B)=\mu\left(A_{1} \cap A_{2}\right)\left(=\mu\left(A_{2}\right)\right)$. It follows that $\mu\left(A_{1}\right)=\mu\left(A_{2}\right)$ and μ^{*} is well-defined.
(iii) Clearly, $\mu^{*}(\oslash)=\mu^{*}(\oslash \Delta \oslash)=\mu(\oslash)=0$, and $\mu^{*}(A \cup M)=\mu(A)$ (as was seen in part (i)) and this is ≥ 0. Finally, let $B_{i} \in \overline{\mathcal{A}}, i=1,2, \ldots, B_{i} \cap$ $B_{j}=\oslash, i \neq j$. Then $B_{i}=A_{i} \cup M_{i}, B_{j}=A_{j} \cup M_{j}$, and

$$
\oslash=B_{i} \cap B_{j}=\left(A_{i} \cap A_{j}\right) \cup\left(A_{i} \cap M_{j}\right) \cup\left(M_{i} \cap A_{j}\right) \cup\left(M_{i} \cap M_{j}\right),
$$

so that $A_{i} \cap A_{j}=\oslash$. Therefore

$$
\begin{aligned}
\mu^{*}\left(\sum_{i=1}^{\infty} B_{i}\right) & =\mu^{*}\left[\bigcup_{i=1}^{\infty}\left(A_{i} \cup M_{i}\right)\right]=\mu^{*}\left[\left(\bigcup_{i=1}^{\infty} A_{i}\right) \cup\left(\begin{array}{l}
\left.\bigcup_{i=1}^{\infty} M_{i}\right) \\
\\
\end{array}\right) \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\mu\left(\sum_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} \mu^{*}\left(A_{i} \cup M_{i}\right) \\
& =\sum_{i=1}^{\infty} \mu^{*}\left(B_{i}\right)
\end{aligned}
$$

It follows that μ^{*} is a measure on $\overline{\mathcal{A}}\left(=\mathcal{A}^{*}\right)$. \#
18. (i) Let $B \in \hat{\mathcal{C}}$ and suppose that $B=A$ for some $A \in \mathcal{A}$. Then $B=A \triangle \varnothing$ with $\oslash \in \mathcal{A}$ and $\mu(\oslash)=0$, so that $B \in \mathcal{A}^{*}$. If $B \subseteq N$ for some $N \in \mathcal{A}$ with $\mu(N)=0$, we have $B=B \triangle \oslash$ with $\oslash \in \mathcal{A}$ and $B \subseteq N \in \mathcal{A}$ with $\mu(N)=0$, so that $B \in \mathcal{A}^{*}$. Thus $\hat{\mathcal{C}} \subseteq \mathcal{A}^{*}$.
(ii) $\hat{\mathcal{C}} \subseteq \mathcal{A}^{*}$ implies that $\sigma(\hat{\mathcal{C}})=\hat{\mathcal{A}} \subseteq \mathcal{A}^{*}$, so it suffices to show that $\mathcal{A}^{*} \subseteq \hat{\mathcal{A}}$. Let $B \in \mathcal{A}^{*}$, so that $B=A \Delta M$ with $A \in \mathcal{A}$ and $M \subseteq N, N \in \mathcal{A}$, $\mu(N)=0$. Since $A=A \Delta \oslash$, it follows that $A \in \hat{\mathcal{C}}$ and hence $A \in \hat{\mathcal{A}}$. Also, $M=\oslash \Delta M$, so that $M \in \hat{\mathcal{C}}$ and hence $M \in \hat{\mathcal{A}}$. Thus, $A, M \in \hat{\mathcal{A}}$ and therefore $A \Delta M \in \hat{\mathcal{A}}$ or $B \in \hat{\mathcal{A}}$. \#
19. Let $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$, and let $\mathcal{A}=\left\{\oslash,\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\},\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}\right\}$. Then \mathcal{A} is, trivially, a σ-field. On \mathcal{A}, define μ as follows: $\mu(\varnothing)=0=\mu\left(\left\{\omega_{1}, \omega_{2}\right\}\right)$, $\mu\left(\left\{\omega_{3}, \omega_{4}\right\}\right)=\mu\left(\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}\right)=1$. Then, clearly, μ is a measure on \mathcal{A}. But $\left\{\omega_{1}\right\} \subset\left\{\omega_{1}, \omega_{2}\right\} \in \mathcal{A}$ with $\mu\left(\left\{\omega_{1}, \omega_{2}\right\}\right)=0$ whereas $\left\{\omega_{1}\right\} \notin \mathcal{A}$. \#
20. Recall that μ^{0} is an outer measure on $\mathcal{P}(\Omega)$ if $\mu^{0}(\varnothing)=0, \mu^{0}$ is \uparrow and sub- σ additive. Now, let $N \in \mathcal{A}^{0}$ with $\mu^{0}(N)=0$, and let M be an arbitrary subset of N. To show that $M \in \mathcal{A}^{0}$. It suffices to show that $\mu^{0}(D) \geq \mu^{0}(M \cap D)+$ $\mu^{0}\left(M^{c} \cap D\right)$ for every $D \subseteq \Omega$. We have: $M \subseteq N$, hence $M \cap D \subseteq N \cap D$ and $\mu^{0}(M \cap D) \leq \mu^{0}(N \cap D)=0$, so that $\mu^{0}(M \cap D)=0$. Next, $M^{c} \cap D \subseteq D$ and $\mu^{0}\left(M^{c} \cap D\right) \leq \mu^{0}(D)$, so that $\mu^{0}(D) \geq \mu^{0}(M \cap D)+\mu^{0}\left(M^{c} \cap D\right)$ for every $D \subseteq \Omega$. \#
21. On \mathcal{B}, define μ in the following manner: $\mu(B)=$ number of integers in B. Then, clearly, μ is a measure satisfying the condition μ (finite interval) $<\infty$. Next, let $x_{n} \uparrow-2$, so that $\mu\left(\left(x_{n}, 0\right]\right)=3$ for all sufficiently large n, and hence $F_{c}\left(x_{n}\right)=c-3$ for all sufficiently large n. But $F_{c}(-2)=c-\mu((-2,0])=c-2$. Hence F_{c} is not left-continuous. \#
22. Indeed, if μ were additive, then $c=\mu(\oslash)=\mu(\oslash \cup \oslash)=\mu(\oslash)+\mu(\oslash)=2 c$, so that $2=1$, a contradiction. \#
23. For $n=2$, let μ_{1} and μ_{2} be σ-finite, and let $\left\{A_{1}^{1}, A_{2}^{1}, \ldots\right\}$ and $\left\{A_{1}^{2}, A_{2}^{2}, \ldots\right\}$ be the associated partitions for which $\mu_{1}\left(A_{i}^{1}\right)<\infty, \mu_{2}\left(A_{i}^{2}\right)<\infty, i \geq 1$. Then $\left\{A_{i}^{1} \cap A_{j}^{2}, i, j \geq 1\right\}$ is a partition of Ω and $\mu\left(A_{i}^{1} \cap A_{j}^{2}\right)=\mu_{1}\left(A_{i}^{1} \cap A_{j}^{2}\right)+$ $\mu_{2}\left(A_{i}^{1} \cap A_{j}^{2}\right)<\infty, i, j \geq 1$, so that μ is σ-finite.
Next, assume the assertion to be true for $n=k$ and we will establish it for $n=k+1$. By setting $\mu_{0}=\mu_{1}+\ldots+\mu_{k}$, we have that both μ_{0} and μ_{k+1} are σ-finite, and let $\left\{B_{i}, i \geq 1\right\}$ and $\left\{A_{i}^{k+1}, i \geq 1\right\}$ be the associated partitions for which $\mu_{0}\left(B_{i}\right)<\infty, \mu_{k+1}\left(A_{i}^{k+1}\right)<\infty, i \geq 1$. Then $\left\{B_{i} \cap A_{j}^{k+1}, i, j \geq 1\right\}$
is a partition of Ω, and $\mu_{0}\left(B_{i} \cap A_{j}^{k+1}\right) \leq \mu_{0}\left(B_{i}\right)<\infty, \mu_{k+1}\left(B_{i} \cap A_{j}^{k+1}\right) \leq$ $\mu_{k+1}\left(A_{j}^{k+1}\right)<\infty, i, j \geq 1$. Thus,

$$
\begin{aligned}
\left(\mu_{1}+\ldots+\mu_{k+1}\right)\left(B_{i} \cap A_{j}^{k+1}\right)= & \left(\mu_{1}+\ldots+\mu_{k}\right)\left(B_{i} \cap A_{j}^{k+1}\right)+ \\
& \mu_{k+1}\left(B_{i} \cap A_{j}^{k+1}\right)<\infty, i, j \geq 1, \text { so that }
\end{aligned}
$$

$\mu_{1}+\ldots+\mu_{k+1}$ is σ-finite. \#
24. (i) Clearly, $\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)=A \triangle B=(A \cup B)-(A \cap B)$. Hence

$$
\begin{aligned}
& P\left[\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right]=P[(A \cup B)-(A \cap B)] \\
& =P(A \cup B)-P(A \cap B)(\text { since } A \cap B \subseteq A \cup B) \\
& =P(A)+P(B)-P(A \cap B)-P(A \cap B) \\
& =P(A)+P(B)-2 P(A \cap B) .
\end{aligned}
$$

(ii) We will use the induction hypothesis.

For $n=2$, we have:

$$
P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right),
$$

so that

$$
\begin{aligned}
P\left(A_{1} \cap A_{2}\right) & =P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cup A_{2}\right) \\
& \geq P\left(A_{1}\right)+P\left(A_{2}\right)-1
\end{aligned}
$$

Next, assume it to be true for $n=k$ and establish it for $n=k+1$. Indeed,

$$
\begin{aligned}
P\left(A_{1} \cap \ldots \cap A_{k+1}\right) & =P\left[\left(A_{1} \cap \ldots \cap A_{k}\right) \cap A_{k+1}\right] \\
& \geq P\left(A_{1} \cap \ldots \cap A_{k}\right)+P\left(A_{k+1}\right)-1 \\
& \geq \sum_{i=1}^{k} P\left(A_{i}\right)-(k-1)+P\left(A_{k+1}\right)-1 \\
& =\sum_{i=1}^{k+1} P\left(A_{i}\right)-[(k+1)-1] .
\end{aligned}
$$

25. $\underline{\lim }_{n \rightarrow \infty} A_{n}=\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}=\cup_{n=1}^{\infty}\left\{\omega_{2}\right\}=\left\{\omega_{2}\right\}, \overline{\lim }_{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} \cup_{k=n}^{\infty}$ $\overrightarrow{A_{k}}=\cap_{n=1}^{\infty}\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\} \stackrel{=}{=}\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$, so that $P\left(\lim _{n \rightarrow \infty} A_{n}\right)=P\left(\left\{\omega_{2}\right\}\right)=$ $\frac{1}{3}, P\left(\overline{\lim }_{n \rightarrow \infty} A_{n}\right)=P\left(\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}\right)=\frac{7}{10}$; also, $P\left(A_{2 n-1}\right)=P\left(\left\{\omega_{1}, \omega_{2}\right\}\right)=$ $\frac{1}{2}, P\left(A_{2 n}\right)=P\left(\left\{\omega_{2}, \omega_{3}\right\}\right)=\frac{8}{5}$, so that $\underline{\lim }_{n \rightarrow \infty} P\left(A_{n}\right)=\frac{1}{2}$ and $\varlimsup_{n \rightarrow \infty}$ $P\left(A_{n}\right)=\frac{8}{5}$. Observe that

$$
P\left(\underline{\lim }_{n \rightarrow \infty} A_{n}\right)=\frac{1}{3} \neq \frac{1}{2}=\underline{\lim }_{n \rightarrow \infty} P\left(A_{n}\right)
$$

and

$$
P\left(\varlimsup_{n \rightarrow \infty} A_{n}\right)=\frac{7}{10} \neq \frac{8}{5}=\varlimsup_{n \rightarrow \infty} P\left(A_{n}\right) . \#
$$

26. (i) If $\left\{\omega_{i}\right\} \in \mathcal{A}$ for all ω_{i}, then, clearly, every subset of Ω is in \mathcal{A}, so that $\mathcal{A}=\mathcal{P}(\Omega)$. On the other hand, if $\mathcal{A}=\mathcal{P}(\Omega)$, then all subjects of Ω are in \mathcal{A}, and in particular, so are $\left\{\omega_{i}\right\}$ for all $\omega_{i} \mathrm{~s}$.
(ii) It is immediate. \#
27. (i) That $\mu(A) \geq 0$ and $\mu(\oslash)=0$ are immediate. Next, let A_{1}, \ldots, A_{n} be pairwise disjoint. Then to show that $\mu\left(\sum_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right)$. If at least one of the $A_{i} \mathrm{~s}$ is infinite, then $\sum_{i=1}^{n} A_{i}$ is infinite, so that $\mu\left(\sum_{i=1}^{n} A_{i}\right)=$ ∞. Also, at least one of the terms on the right-hand side is ∞, so that $\sum_{i=1}^{n} \mu\left(A_{i}\right)=\infty$. On the other hand, if all A_{1}, \ldots, A_{n} are finite, then $\sum_{i=1}^{n} A_{i}$ is finite and hence $\mu\left(\sum_{i=1}^{n} A_{i}\right)=0$. The right-hand side is also equal to 0 since each term is 0 . Next, μ is not σ-additive, because if all A_{i} s are finite, then $\sum_{i=1}^{\infty} A_{i}$ is infinite, so that $\mu\left(\sum_{i=1}^{\infty} A_{i}\right)=\infty$, whereas $\sum_{i=1}^{\infty} \mu\left(A_{i}\right)=\sum_{i=1}^{\infty} 0=0$.
(ii) Clearly, $\Omega=\cup_{n=1}^{\infty} A_{n}$, where $A_{n}=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, so that $A_{n} \subset A_{n+1}$, $n \geq 1$, and $\mu\left(A_{n}\right)=0$ for all n. Since $\mu\left(A_{n}\right)=0, n \geq 1$, it follows that $\mu\left(A_{n}^{c}\right)=\infty$ for all n. \#
28. (i) We have to prove that $\mu^{0}(\oslash)=0, \mu^{0}(A) \leq \mu^{0}(B)$ for $A \subset B$, and μ^{0} is a sub- σ-additive. That $\mu^{0}(\oslash)=0$ holds by the definition of μ^{0}. Next, suppose that $A \subset B$. There are three cases to consider. Let B be finite. Then A is finite, and $\mu^{0}(A)=\frac{a}{a+1}<\frac{b}{b+1}=\mu^{0}(B)$ since $a<b$. Let B be infinite but A be finite. Then $\mu^{0}(A)=\frac{a}{a+1}<1=\mu^{0}(B)$. Finally, let both A and B be infinite. Then $\mu^{0}(A)=1 \leq 1=\mu^{0}(B)$.
Now to establish sub- σ-additivity:

$$
\mu^{0}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{0}\left(A_{n}\right) .
$$

Suppose that at least one of the $A_{n} \mathrm{~s}$ is infinite, e.g., $A_{n_{0}}$. Then the union $\cup_{n=1}^{\infty} A_{n}$ is infinite, and hence $\mu^{0}\left(\cup_{n=1}^{\infty} A_{n}\right)=1$, whereas $\sum_{n=1}^{\infty} \mu^{0}\left(A_{n}\right) \geq$ 1 , since $\mu^{0}\left(A_{n_{0}}\right)=1$ and $\mu^{0}\left(A_{n}\right) \geq 0, n \geq 1$. Next, let all A_{n} be finite and $\neq \oslash$. Then $\cup_{n=1}^{\infty} A_{n}$ is infinite, so that $\mu^{0}\left(\cup_{n=1}^{\infty} A_{n}\right)=1$. As for the right-hand side, $\mu^{0}\left(A_{n}\right)=\frac{a_{n}}{a_{n}+1} \geq \frac{1}{2}$ for all n, so that $\sum_{n=1}^{\infty} \mu^{0}\left(A_{n}\right)=$ ∞. Finally, suppose that only finitely many of the $A_{n} \mathrm{~s}$ are finite, e.g., $A_{n_{1}}, \ldots, A_{n_{k}}$. Then, clearly, $\sup \left(A_{n_{1}} \cup \ldots \cup A_{n_{k}}\right) \leq \sup A_{n_{1}}+\ldots+$ $\sup A_{n_{k}}$, so that $\mu^{0}\left(\cup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu^{0}\left(A_{n}\right)$. Therefore μ^{0} is an outer measure.
(ii) By Remark 6(i), A is μ^{0}-measurable if

$$
\mu^{0}(D) \geq \mu^{0}(A \cap D)+\mu^{0}\left(A^{c} \cap D\right) \text { for every } D \subseteq \Omega
$$

Also, by Remark 6(ii), \varnothing and Ω are μ^{0}-measurable, so to investigate the last inequality for $\oslash \subset A \subset \Omega$. Consider the following possible cases. Let both A and A^{c} be infinite, and take $D=\Omega$. Then $\mu^{0}(\Omega)=1$, but
$\mu^{0}(A \cap \Omega)+\mu^{0}\left(A^{c} \cap \Omega\right)=\mu^{0}(A)+\mu^{0}\left(A^{c}\right)=1+1=2$, so that the inequality is violated. Let A be infinite but A^{c} be finite, and take $D=\Omega$. Then $\mu^{0}(\Omega)=1$, but $\mu^{0}(A \cap \Omega)+\mu^{0}\left(A^{c} \cap \Omega\right)=\mu^{0}(A)+\mu^{0}\left(A^{c}\right)=$ $1+\frac{c}{c+1}, c=\sup A^{c}$. Again, the inequality is violated. Finally, let A be finite (so that A^{c} is infinite), and take $D=\Omega$. Once again, $\mu^{0}(\Omega)=1$, and $\mu^{0}(A \cap \Omega)+\mu^{0}\left(A^{c} \cap \Omega\right)=\mu^{0}(A)+\mu^{0}\left(A^{c}\right)=\frac{a}{a+1}+1, a=\sup A$. So, the inequality is violated. The conclusion then is that $\mathcal{A}_{0}=\{\varnothing, \Omega\}$. \#
29. It is immediate since:

$$
\begin{aligned}
& P(-X \leq-m)=P(X \geq m) \geq \frac{1}{2}, \text { and } \\
& P(-X \geq-m)=P(X \leq m) \geq \frac{1}{2}
\end{aligned}
$$

30. By symmetry, we have

$$
\begin{aligned}
P(X \leq x) & =P(-X \leq x)=P(X \geq-x) \\
& =1-P(X<-x) \geq 1-P(X \leq-x)
\end{aligned}
$$

For $x=0$, this becomes

$$
P(X \leq 0) \geq 1-P(x \leq 0), \text { or } P(x \leq 0) \geq \frac{1}{2} .
$$

Again, by symmetry,

$$
P(X \geq x)=P(-X \geq x)=P(X \leq-x)
$$

For $x=0$, this relation becomes $P(X \geq 0)=P(X \leq 0)$. But $P(X \leq 0) \geq \frac{1}{2}$ as already shown. Thus, $P(X \geq 0) \geq \frac{1}{2}$, and 0 is a median for X. \#
31. From $B \subseteq A \cup B$, we get $\mu^{0}(B) \leq \mu^{0}(A \cup B)$. However, $\mu^{0}(A \cup B) \leq$ $\mu^{0}(A)+\mu^{0}(B)=\mu^{0}(B)$ (by the sub-additivity property of μ^{0}). Thus, $\mu^{0}(B) \leq$ $\mu^{0}(A \cup B) \leq \mu^{0}(B)$, so that $\mu^{0}(A \cup B)=\mu^{0}(B)$. \#
32. Let $N=(f \neq g)$, and let $B \in \mathcal{B}$. Then $f^{-1}(B) \in \mathcal{A}$, by assuming that, e.g., f is measurable. Also, $g^{-1}(B)=\left\{\left[g^{-1}(B)\right] \cap N\right\} \cup\left\{\left[g^{-1}(B)\right] \cap N^{c}\right\}=$ $\left\{\left[g^{-1}(B)\right] \cap N\right\} \cup f^{-1}(B)$ (since $f=g$ on $\left.N^{c}\right)$. But $\left[g^{-1}(B)\right] \cap N \subseteq N$ with $\mu(N)=0$. Thus, $\left[g^{-1}(B)\right] \cap N$ is in \mathcal{A}, and hence $g^{-1}(B)$ is in \mathcal{A}. It follows that g is measurable. \#
33. Indeed, $B \in \mathcal{B}$, we have $f^{-1}(B) \subseteq A$ with $\mu\left[f^{-1}(B)\right]=0$, so that $f^{-1}(B) \in \mathcal{A}$, and hence f is measurable. \#
34. (i) We have to show that μ is nonnegative, $\mu(\varnothing)=0$, and μ is σ-additive. Indeed, $\mu(A)=\mu_{1}(A)+\mu_{2}(A) \geq 0 ; \mu(\varnothing)=\mu_{1}(\varnothing)+\mu_{2}(\varnothing)=0$; $\mu\left(\sum_{i=1}^{\infty} A_{i}\right)=\mu_{1}\left(\sum_{i=1}^{\infty} A_{i}\right)+\mu_{2}\left(\sum_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu_{1}\left(A_{i}\right)+\sum_{i=1}^{\infty}$ $\mu_{2}\left(A_{i}\right)=\sum_{i=1}^{\infty}\left(\mu_{1}+\mu_{2}\right)\left(A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$.
(ii) Suppose that, e.g., μ_{1} is complete, or more properly, \mathcal{A} is complete with respect to μ_{1}, which means that \mathcal{A} contains all subsets of the μ_{1}-null sets. So, let $A \in \mathcal{A}$ with $\mu(A)=0$. Then $\mu_{1}(A)\left(=\mu_{2}(A)\right)=0$. Thus, for an arbitrary $B \subseteq A$, we have $\mu_{1}(B) \leq \mu_{1}(A)=0$ and $B \in \mathcal{A}$. It follows that $\mu(B) \leq \mu(A)=0$, so that μ is complete. \#
35. (i) Unions of any two members of \mathcal{C}_{2} produce elements in \mathcal{C}_{2} except for two new elements; namely,

$$
(A \cap B) \cup\left(A^{c} \cap B^{c}\right) \quad \text { and }\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right) .
$$

Beyond the obvious results, we have:

$$
\begin{aligned}
& A \cup\left(A^{c} \cap B\right)=A \cup B, A \cup\left(A^{c} \cap B^{c}\right)=A \cup B^{c} ; \\
& A^{c} \cup(A \cap B)=A^{c} \cup B, A^{c} \cup\left(A \cap B^{c}\right)=A^{c} \cup B^{c} ; \\
& B \cup\left(A \cap B^{c}\right)=A \cup B, B \cup\left(A^{c} \cap B^{c}\right)=A^{c} \cup B ; \\
& B^{c} \cup(A \cap B)=A \cup B^{c}, B^{c} \cup\left(A^{c} \cap B\right)=A^{c} \cup B^{c} ; \\
& (A \cap B) \cup\left(A^{c} \cap B^{c}\right) \text { new element, } \\
& (A \cap B) \cup\left(A^{c} \cup B^{c}\right)=(A \cap B) \cup(A \cap B)^{c}=\Omega ; \\
& \left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right) \text { new element, } \\
& \left(A \cap B^{c}\right) \cup\left(A^{c} \cup B\right)=\Omega ; \\
& \left(A^{c} \cap B^{c}\right) \cup(A \cup B)=(A \cup B)^{c} \cup(A \cup B)=\Omega .
\end{aligned}
$$

(ii) Closeness under complementation is immediate for all elements except, perhaps, for the last two, each of which is the complement of the other. Indeed,

$$
\begin{aligned}
{\left[(A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right]^{c} } & =\left(A^{c} \cup B^{c}\right) \cap(A \cup B) \\
& =\left[\left(A^{c} \cup B^{c}\right) \cap A\right] \cup\left[\left(A^{c} \cup B^{c}\right) \cap B\right] \\
& =\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right) .
\end{aligned}
$$

In checking closeness under unions, it suffices to restrict ourselves to forming unions of two elements, one taken from each one of the classes:

$$
\begin{aligned}
& \left\{(A \cap B) \cup\left(A^{c} \cap B^{c}\right),\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right\}, \\
& \left\{A, A^{c}, B, B^{c}, A \cap B, A \cap B^{c}, A^{c} \cap B, A^{c} \cap B^{c}\right\},
\end{aligned}
$$

as well as any two elements from the second class above. To this end, and except for the obvious results, we have:

$$
\begin{aligned}
& A \cup\left[(A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right]=A \cup\left(A^{c} \cap B^{c}\right)=A \cup B^{c} ; \\
& A \cup\left[\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right]=A \cup\left(A^{c} \cap B\right)=A \cup B ; \\
& A^{c} \cup\left[(A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right]=A^{c} \cup(A \cap B)=A^{c} \cup B ; \\
& A^{c} \cup\left[\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right]=A^{c} \cup\left(A \cap B^{c}\right)=A^{c} \cup B^{c} ; \\
& B \cup\left[(A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right]=B \cup\left(A^{c} \cap B^{c}\right)=A^{c} \cup B ;
\end{aligned}
$$

$$
\begin{aligned}
& B \cup\left[\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right]=B \cup\left(A \cap B^{c}\right)=A \cup B ; \\
& B^{c} \cup\left[(A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right]=B^{c} \cup(A \cap B)=A \cup B^{c} ; \\
& B^{c} \cup\left[\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right]=B^{c} \cup\left(A \cap B^{c}\right)=B^{c} ; \\
& (A \cap B) \cup\left(A^{c} \cup B^{c}\right)=(A \cap B) \cup(A \cap B)^{c}=\Omega ; \\
& (A \cap B) \cup\left[\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right]=A \cup\left(A^{c} \cap B\right)=A \cup B ; \\
& \left(A \cap B^{c}\right) \cup\left(A^{c} \cup B\right)=\Omega, \\
& \left(A \cap B^{c}\right) \cup\left[(A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right]=A \cup\left(A^{c} \cap B^{c}\right)=A \cup B^{c} ; \\
& \left(A^{c} \cap B\right) \cup\left(A \cup B^{c}\right)=\Omega, \\
& \left(A^{c} \cap B\right) \cup\left[(A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right]=A^{c} \cup(A \cap B)=A^{c} \cup B ; \\
& \left(A^{c} \cap B^{c}\right) \cup(A \cup B)=(A \cup B)^{c} \cup(A \cup B)=\Omega, \\
& \left(A^{c} \cap B^{c}\right) \cup\left[\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right]=B^{c} \cup\left(A^{c} \cap B\right)=A^{c} \cup B^{c} .
\end{aligned}
$$

Again, except for the obvious results, we have:

$$
\begin{aligned}
& (A \cup B) \cup\left[(A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right]=(A \cup B) \cup\left(A^{c} \cap B^{c}\right) \\
& =(A \cup B) \cup(A \cup B)^{c}=\Omega ; \\
& \left(A \cup B^{c}\right) \cup\left[\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right]=\left(A \cup B^{c}\right) \cup\left(A^{c} \cap B\right)=\Omega ; \\
& \left(A^{c} \cup B\right) \cup\left[\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)\right]=\left(A^{c} \cup B\right) \cup\left(A \cap B^{c}\right)=\Omega ; \\
& \left(A^{c} \cup B^{c}\right) \cup\left[(A \cap B) \cup\left(A^{c} \cap B^{c}\right)\right]=\left(A^{c} \cup B^{c}\right) \cup(A \cap B) \\
& =(A \cup B)^{c} \cup(A \cap B)=\Omega .
\end{aligned}
$$

Chapter 3

Some Modes of Convergence of a Sequence of Random Variables and their Relationships

1. Indeed, $\left|X_{n}-X\right|=\left(X_{n}-X\right)^{+}+\left(X_{n}-X\right)^{-}$, so that $\left(X_{n}-X\right)^{+} \leq\left|X_{n}-X\right|,\left(X_{n}-\right.$ $X)^{-} \leq\left|X_{n}-X\right|$. Hence, for every $\varepsilon>0, \mu\left[\left(X_{n}-X\right)^{+} \geq \varepsilon\right] \leq \mu\left[\left|X_{n}-X\right| \geq\right.$ $\varepsilon] \underset{n \rightarrow \infty}{\longrightarrow} 0$, and likewise, $\mu\left[\left(X_{n}-X\right)^{-} \geq \varepsilon\right] \leq \mu\left[\left|X_{n}-X\right| \geq \varepsilon\right] \underset{n \rightarrow \infty}{\longrightarrow} 0$.
Next, recall that (Exercise 28, Chapter 1) that for any two r.v.s X and $Y,(X+$ $Y)^{+} \leq X^{+}+Y^{+}$and $(X+Y)^{-} \leq X^{-}+Y^{-}$. Hence

$$
\begin{aligned}
& X_{n}^{+}=\left(\left(X_{n}-X\right)+X\right)^{+} \leq\left(X_{n}-X\right)^{+}+X^{+}, \\
& X^{+}=\left(\left(X-X_{n}\right)+X_{n}\right)^{+} \leq\left(X-X_{n}\right)^{+}+X_{n}^{+}=\left(X_{n}-X\right)^{-}+X_{n}^{+},
\end{aligned}
$$

because, as is easily seen, $(-Z)^{+}=Z^{-}$. Then

$$
-\left(X_{n}-X\right)^{-} \leq X_{n}^{+}-X^{+} \leq\left(X_{n}-X\right)^{+}
$$

or $\left|X_{n}^{+}-X^{+}\right| \leq\left(X_{n}-X\right)^{+}+\left(X_{n}-X\right)^{-}=\left|X_{n}-X\right|$, and therefore

$$
\mu\left(\left|X_{n}^{+}-X^{+}\right| \geq \varepsilon\right) \leq \mu\left(\left|X_{n}-X\right| \geq \varepsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

so that $X_{n}^{+} \xrightarrow[n \rightarrow \infty]{\stackrel{\mu}{\longrightarrow}} X^{+}$. Likewise, $X_{n}^{-} \xrightarrow[n \rightarrow \infty]{\mu} X^{-}$. \#

