$$= \bigcap_{i=1}^{\infty} [(A_i^1)^c \cup (A_i^2)^c \cup \ldots]$$

= $[(A_1^1)^c \cup (A_1^2)^c \cup \ldots] \cap [(A_2^1)^c \cup (A_2^2)^c \cup \ldots]$
 $\cap \ldots \cap [(A_n^1)^c \cup (A_n^2)^c \cup \ldots] \cap \ldots,$

and this is equal to

$$\cup [(A_1^{i_1})^c (\cap A_2^{i_2})^c \cap \ldots \cap (A_n^{i_n})^c \cap \ldots]$$

with $i_1, i_2, \ldots, i_n, \ldots$ integers ≥ 1 , and the union extends over all choices of the sets $(A_1^{i_1})^c, (A_2^{i_2})^c, \ldots, (A_n^{i_n})^c, \ldots$ from the respective collections: $(A_i^1)^c$, $(A_i^2)^c, \ldots, (A_i^n)^c, \ldots, i = 1, 2, \ldots, n, \ldots$ However, these choices produce $\mathbb{N}_0 \times \mathbb{N}_0 \times \ldots \times \mathbb{N}_0 \times \ldots = \mathbb{N}_0^{\mathbb{N}_0} = \mathbb{N}$ where \mathbb{N}_0 and \mathbb{N} are the cardinal numbers of a countable set and of the continuum, respectively. Thus, there are uncountable members in the union, and hence the union need not be in \mathcal{A} . In other word, \mathcal{A}^c need not be in \mathcal{A} , so that \mathcal{A} need not be a σ -field.

Remark: For the justification of the equality, asserted in the derivations related to A^c , refer to the remark following the proof of Exercise 41. #

Chapter 2

Definition and Construction of a Measure and its Basic Properties

- **1.** If Ω is finite, then μ is ≥ 0 , $\mu(\emptyset) = 0$ and finitely additive (since there are only finitely many subsets of Ω). Thus, μ is a measure, and also finite. If Ω is denumerable, $\Omega = \{\omega_1, \omega_2, \ldots\}$, then $\mu \geq 0$, $\mu(\emptyset) = 0$, and if $A_n, n \geq 1$, are $\neq \emptyset$ and pairwise disjoint, then $\mu(\sum_{n=1}^{\infty} A_n) = \infty$ and $\sum_{n=1}^{\infty} \mu(A_n) = \infty$ since each term is ≥ 1 . Thus, μ is a measure. It is σ -finite, since $\Omega = \sum_{n=1}^{\infty} \{\omega_n\}$ and $\mu(\{\omega_n\}) = 1$ (finite). #
- 2. (i) Let A_i ∈ C, i = 1,..., n, A_i ∩ A_j = Ø, i ≠ j, and set A = ∑_{i=1}ⁿ A_i, so that A ∈ C. Then either A is finite or A^c is finite. If A is finite and A_i, i = 1,..., n, are finite, and therefore P(A) = 0 = 0 + ... + 0 = P(A₁) + ... + P(A_n). If A^c is finite, then A is not finite and hence at least one of A₁,..., A_n is not finite; call A_{i0} such an event. We claim that A_{i0} is unique. Indeed, if A_i and A_j, i ≠ j, are not finite, then A^c_i and A^c_j are finite. Since A_i ∩ A_j = Ø, it follows that A_i ⊂ A^c_j and hence A_i is finite, a contradiction. Then ∑_{i=1}ⁿ P(A_i) = P(A_{i0}) = 1 (since P(A_i) = 0, i ≠ i₀, as being all finite), and P(A) = 1. Hence P(A) = ∑_{i=1}ⁿ P(A_i).
 - (ii) Let $\Omega = \{\omega_1, \omega_2, ...\}$ and take $A_i = \{\omega_i\}$, so that $A_i \cap A_j = \emptyset$, $i \neq j$, and $P(A_i) = 0$ for all *i*. However, $P\left(\sum_{i=1}^{\infty} A_i\right) (= P(\Omega)) = 1$ since $\sum_{i=1}^{\infty} A_i$ is infinite (and $\left(\sum_{i=1}^{n} A_i\right)^c = \emptyset$ finite). Therefore $P\left(\sum_{i=1}^{\infty} A_i\right) = 1 \neq 0 = \sum_{i=1}^{\infty} P(A_i)$, and *P* is not σ -additive.

(iii) Let $A_n \in C$, $n \ge 1$, $A_i \cap A_j = \emptyset$, $i \ne j$, and set $A = \sum_{n=1}^{\infty} A_n$, so that $A \in C$. Then either A is finite or A^c is finite. If A is finite, then all A_n s are finite (indeed, A is only the sum of finitely many of the A_n s) and hence $P(A_n) = 0$ for all n, and also P(A) = 0. Thus, $P(A) = \sum_{n=1}^{\infty} P(A_n)$ (actually, the σ -additivity here degenerates to finite additivity). If A^c is finite, then A is infinite. Since Ω is uncountable, it follows that at least one of the A_n s is infinite, because otherwise A would be countable (so that $A + A^c = \Omega$ is countable, a contradiction); call A_{n_0} such an event. We claim that A_{n_0} is unique. Indeed, if A_i and A_j , $i \ne j$, are infinite, then A_i^c and A_j^c are finite. Since $A_i \cap A_j = \emptyset$, it follows that $A_i \subset A_j^c$ and hence A_i is finite, a contradiction. Then $\sum_{n=1}^{\infty} P(A_n) = P(A_{n_0}) = 1$ (since $P(A_n) = 0$, $n \ne n_0$, as being all finite), and P(A) = 1. Hence $P(A) = \sum_{n=1}^{\infty} P(A_n)$.

Finally, it is clear that $P(A) \ge 0$, $P(\oslash) = 0$ and $P(\Omega) = 1$. These properties along with the σ -additivity just established make P a probability measure. #

- **3.** Clearly, $P(A) \ge 0$, $P(\emptyset) = 0$ and $P(\Omega) = 1$ since $\Omega^c = \emptyset$ countable. It remains to establish σ -additivity. Let $A_n \in C$, $n \ge 1$, $A_i \cap A_j = \emptyset$, $i \ne j$, and set $A = \bigcup_{n=1}^{\infty} A_n$. Since $A \in C$, it follows that either A is countable or A^c is countable. If A is countable, then all A_n s are countable, and hence P(A) = 0 and $P(A_n) = 0$, $n \ge 1$, so that $P(A) = \sum_{n=1}^{\infty} P(A_n)$. If A^c is countable, then A is uncountable, and therefore at least one of the A_n s is uncountable; call A_{n_0} such an event. We claim that A_{n_0} is unique. Indeed, if A_i and A_j , $i \ne j$, are uncountable, then A_i^c and A_j^c are countable. Since $A_i \cap A_j = \emptyset$, it follows that $A_i \subset A_j^c$ and hence A_i is countable, a contradiction. Then $\sum_{n=1}^{\infty} P(A_n) = P(A_{n_0}) = 1$ (since $P(A_i) = 0$, $i \ne n_0$, as being all countable), and P(A) = 1. Hence $P(A) = \sum_{n=1}^{\infty} P(A_n)$. #
- **4.** $P(A_n) = 1$ if and only if $P(A_n^c) = 0$, which implies that $P\left(\bigcup_{n=1}^{\infty} A_n^c\right) \le \sum_{n=1}^{\infty} P(A_n^c) = 0$; i.e., $P\left(\bigcup_{n=1}^{\infty} A_n^c\right) = 0$ or $P\left[\left(\bigcap_{n=1}^{\infty} A_n\right)^c\right] = 0$, and hence $P\left(\bigcap_{n=1}^{\infty} A_n\right) = 1$. #
- 5. For each $n \ge 2$, there are at most n 1 events A_i s for which $P(A_i) > \frac{1}{n}$, because otherwise, we could choose n events with $P(A_{i_j}) > \frac{1}{n}$, so that $\sum_{j=1}^{n} P(A_{i_j}) > 1$. However, $\sum_{j=1}^{n} A_{i_j} \subseteq \Omega$ and $\sum_{j=1}^{n} P(A_{i_j}) = P\left(\sum_{j=1}^{n} A_{i_j}\right)$ (by pairwise disjointness), and this is $\le P(\Omega) = 1$, a contradiction. Thus, if $I_n = \{i \in I; P(A_i) > \frac{1}{n}\}$, then the cardinality of I_n is $\le n-1$. Set $I_0 = \{i \in I; P(A_i) > 0\}$. Then, clearly, $I_0 = \bigcup_{n=2}^{\infty} I_n$, and since each I_n is finite, I_0 is countable. #
- **6.** Clearly, $\mu(A) \ge 0$ and $\mu(\emptyset) = 0$. To establish σ -additivity. To this end, let $A_n \in \mathcal{A}, A_i \cap A_j = \emptyset, i \ne j$, and set $A = \sum_{n=1}^{\infty} A_n$. Then:

$$\mu(A) = \sum_{\omega_n \in A} p_n = \sum_{i=1}^{\infty} \sum_{\omega_n \in A_i} p_n = \sum_{i=1}^{\infty} \mu(A_i). \#$$

- 7. Let $\Omega_+ = \{\omega_n s; p_n > 0\}$. Then the atoms are those A which are of the form: $A = \{\omega_n\} \cup N$, where $\emptyset \subseteq N \subseteq \Omega - \Omega_+$. #
- 8. $\mu\left(\underline{\lim}_{n\to\infty}A_n\right) = \mu\left(\bigcup_{n=1}^{\infty}\bigcap_{i=n}^{\infty}A_i\right) = \mu\left(\lim_{n\to\infty}\bigcap_{i=n}^{\infty}A_i\right) = \lim_{n\to\infty}\mu_n(A_n)$ $\mu\left(\bigcap_{i=n}^{\infty}A_i\right) \leq \underline{\lim}_{n\to\infty}\mu(A_n)$ since $\bigcap_{i=n}^{\infty}A_i \subseteq A_n$. Next, $\mu\left(\overline{\lim}_{n\to\infty}A_n\right) = \mu\left(\bigcap_{n=1}^{\infty}\bigcup_{i=n}^{\infty}A_i\right) = \mu\left(\lim_{n\to\infty}\bigcup_{i=n}^{\infty}A_i\right) = \lim_{n\to\infty}\mu\left(\bigcup_{i=n}^{\infty}A_i\right)$, provided $\mu\left(\bigcup_{i=n}^{\infty}A_i\right) < \infty$ for some *n*, and this is $\geq \overline{\lim}_{n\to\infty}\mu(A_n)$ since $\bigcup_{i=n}^{\infty}A_i \supseteq A_n$. #

9. μ^0 is an outer measure; i.e., $\mu^0(\oslash) = 0, \mu^0$ is \uparrow , and μ^0 is sub- σ -additive, because: $\mu^0(\oslash) = I_{\oslash}(\omega) = 0; A \subseteq B$ implies $I_A(\omega_0) \leq I_B(\omega_0)$, so that $\mu^0(A) = I_A(\omega_0) \leq I_B(\omega_0) = \mu^0(B)$; clearly, $I_{\bigcup_{i=1}^{\infty}A_i}(\omega_0) \leq \sum_{i=1}^{\infty} I_{A_i}(\omega_0)$, so that $\mu^0\left(\bigcup_{i=1}^{\infty}A_i\right) = I_{\bigcup_{i=1}^{\infty}A_i}(\omega_0) \leq \sum_{i=1}^{\infty} I_{A_i}(\omega_0) = \sum_{i=1}^{\infty} \mu^0(A_i)$. #

That $\mu^0(\emptyset) = 0$ and \uparrow are obvious. Denote by C_i the *i*-th column, i = 1, ..., 10, and let $A_n \subseteq \Omega$, $n \ge 1$. To show $\mu^0(\bigcup_{n\ge 1}A_n) \le \sum_{n\ge 1}\mu^0(A_n)$. Set $A = \bigcup_{n\ge 1}A_n$ and suppose $\mu(A) = k$. Then there exist *k* columns C_{i_1}, \ldots, C_{i_k} such that $C_{i_j} \cap A \ne \emptyset$, $j = 1, \ldots, k$. This implies that there exists at least one $x_j \in C_{i_j} \cap A$ with $x_j \in C_{i_j}$ and $x_j \in A$, so that $x_j \in C_{i_j}$ and $x_j \in A_{n_j}$, $j = 1, \ldots, k$, where n_1, \ldots, n_k are chosen from the set $\{1, 2, \ldots\}$ and need not be distinct. Then $\mu^0(A_{n_j}) \ge 1$, $j = 1, \ldots, k$, and therefore:

$$k \le \sum_{j=1}^{k} \mu^{0}(A_{n_{j}}) \le \sum_{n \ge 1} \mu^{0}(A_{n_{j}}) \text{ or } \mu^{0}\left(\bigcup_{n \ge 1} A_{n}\right) \le \sum_{n \ge 1} \mu^{0}(A_{n}). \#$$

- 11.
- (i) In the first place, it is clear that μ^{*}(∅) = 0 and μ^{*}(Ω) = 1. Next, let ∅ ⊂ A ⊂ Ω. The only covering of A by member of F is Ω, so that μ^{*}(A) = 1. Thus, μ^{*}(A) = 0 if A = ∅ and μ^{*}(A) = 1 if A ≠ ∅.
- (ii) First, Ø and Ω are μ*-measurable, and let Ø ⊂ A ⊂ Ω (which implies Ø ⊂ A^c ⊂ Ω). Then A cannot be μ*-measurable. Indeed, in the required equality μ*(D) = μ*(A ∩ D) + μ*(A^c ∩ D), take D = Ω. Then the left-hand side is μ*(D) = μ*(Ω) = 1, and the right-hand side is μ*(A ∩ Ω) + μ*(A^c ∩ Ω) = μ*(A) + μ*(A^c) = 1 + 1 = 2, and the equality is violated. Hence A* = {Ø, Ω}. #
- 12.
- (i) C is not a field because, e.g., $\{\omega_1, \omega_2\} \cup \{\omega_1, \omega_3\} = \{\omega_1, \omega_2, \omega_3\} \notin C$.
- (ii) Clearly, $\mu(A) \ge 0$ and $\mu(\emptyset) = 0$. The only two disjoint sets whose sum is also in C are: $\{\omega_1, \omega_2\} + \{\omega_3, \omega_4\} = \Omega$, $\{\omega_1, \omega_3\} + \{\omega_2, \omega_4\} = \Omega$, and, by taking measures, we have: 3+3 = 6, 3+3 = 6, so that μ is a measure.
- (iii) On $C: \mu_1(\emptyset) = \mu_2(\emptyset) = 0, \mu_1(\Omega) = \mu_2(\Omega) = 6, \mu_1(\{\omega_1, \omega_2\}) = 3 = \mu_2(\{\omega_1, \omega_2\}), \mu_1(\{\omega_1, \omega_3\}) = 3 = \mu_2(\{\omega_1, \omega_2\}), \mu_1(\{\omega_2, \omega_4\}) = 3 = \mu_2(\{\omega_2, \omega_4\}), \mu_1(\{\omega_3, \omega_4\}) = 3 = \mu_2(\{\omega_3, \omega_4\}), \text{ so that } \mu_1 = \mu_2 \text{ on } C.$
- (iv) Write out the subsets of Ω and their coverages by unions of members of C with the smallest measures to get:

$$\begin{split} & \omega_{1} : \{\omega_{1}, \omega_{2}\} \\ & \omega_{2} : \{\omega_{1}, \omega_{2}\} \\ & \omega_{3} : \{\omega_{1}, \omega_{3}\} \\ & \omega_{4} : \{\omega_{2}, \omega_{4}\} \\ \{\omega_{1}, \omega_{2}\} : \{\omega_{1}, \omega_{2}\} \\ \{\omega_{1}, \omega_{3}\} : \{\omega_{1}, \omega_{3}\} \\ \{\omega_{1}, \omega_{4}\} : \{\omega_{1}, \omega_{2}\} \cup \{\omega_{2}, \omega_{4}\} \cup \{\omega_{2}, \omega_{4}\} \\ & \left\{\omega_{1}, \omega_{3}\right\} \cup \{\omega_{3}, \omega_{4}\} \\ \{\omega_{2}, \omega_{3}\} : \{\omega_{1}, \omega_{2}\} \cup \{\omega_{1}, \omega_{3}\} \cup \{\omega_{2}, \omega_{4}\} \\ & \left\{\omega_{2}, \omega_{4}\right\} : \{\omega_{2}, \omega_{4}\} \\ \{\omega_{2}, \omega_{4}\} : \{\omega_{2}, \omega_{4}\} \\ \{\omega_{3}, \omega_{4}\} : \{\omega_{3}, \omega_{4}\} \\ \{\omega_{1}, \omega_{2}, \omega_{3}\} : \{\omega_{1}, \omega_{2}\} \cup \{\omega_{1}, \omega_{3}\} \\ \{\omega_{1}, \omega_{2}, \omega_{4}\} : \{\omega_{1}, \omega_{2}\} \cup \{\omega_{1}, \omega_{3}\} \\ \{\omega_{1}, \omega_{2}, \omega_{4}\} : \{\omega_{1}, \omega_{2}\} \cup \{\omega_{2}, \omega_{4}\} \\ \{\omega_{1}, \omega_{3}, \omega_{4}\} : \{\omega_{1}, \omega_{3}\} \cup \{\omega_{2}, \omega_{4}\} \\ \{\omega_{2}, \omega_{3}, \omega_{4}\} : \{\omega_{2}, \omega_{4}\} \cup \{\omega_{3}, \omega_{4}\}. Then: \end{split}$$

$$\mu^{*}(\{\omega_{1}\}) = \mu^{*}(\{\omega_{2}\}) = \mu^{*}(\{\omega_{3}\}) = \mu^{*}(\{\omega_{4}\}) = 3,$$

$$\mu^{*}(\{\omega_{1}, \omega_{2}\}) = \mu^{*}(\{\omega_{1}, \omega_{3}\}) = \mu^{*}(\{\omega_{2}, \omega_{4}\}) = \mu^{*}(\{\omega_{3}, \omega_{4}\}) = 3,$$

$$\mu^{*}(\{\omega_{1}, \omega_{4}\}) = \mu^{*}(\{\omega_{2}, \omega_{3}\}) = 6,$$

$$\mu^{*}(\{\omega_{1}, \omega_{2}, \omega_{3}\}) = \mu^{*}(\{\omega_{1}, \omega_{2}, \omega_{4}\}) = \mu^{*}(\{\omega_{1}, \omega_{3}, \omega_{4}\})$$

$$= \mu^{*}(\{\omega_{2}, \omega_{3}, \omega_{4}\}) = 6.$$

(v) By part (iv), $\mu^* \neq \mu_1 \neq \mu_2$ because, e.g., $\mu_1(\{\omega_1, \omega_4\}) = 2$, $\mu_2(\{\omega_1, \omega_4\}) = 4$ and $\mu^*(\{\omega_1, \omega_4\}) = 6$, all distinct. #

13. (i) Immediate.

- (ii) The only partition of Ω with members in C is $\{A, A^c\}$ and $\mu(A) = \mu(A^c) = 0$ $(A^c = \{0, 2, 4, \ldots\}).$
- (iii) On C, $\mu_1(\emptyset) = \mu_2(\emptyset) = 0$, and $\mu_1(A) = \mu_1(A^c) = \mu_1(\Omega) = \infty = \mu_2(A) = \mu_2(A^c) = \mu_2(\Omega)$.
- (iv) Let Ø ⊂ B ⊂ Ω. Then the only possible coverages of B by members of C are: A, A^c, Ω, all of which have µ-measure ∞. Thus, µ*(B) = ∞ for every B as above.
- (v) Let Ø ⊂ B ⊂ Ω. Then if D ⊂ Ω is = Ø, from Ø = (B∩Ø)+(B^c∩Ø), it follows that 0 = 0, whereas for D ≠ Ø, the relation D = (B∩D)+(B^c∩D) implies that at least one of B∩D and B^c∩D is ≠ Ø. Hence ∞ = ∞ and the equality holds again. Since Ø and Ω are always μ*-measurable, it follows that A* = P(Ω). #
- **15.** (i) To show that $A \triangle M = (A N) \cup [N \cap (A \triangle M)]$, where $M \subseteq N$. We have

$$A \triangle M = (A \triangle M) \cap \Omega = (A \triangle M) \cap (N \cup N^{c})$$

$$= [(A \triangle M) \cap N] \cup [(A \triangle M) \cap N^{c}]$$

$$= [N \cap (A \triangle M)] \cup \{[(A - M) \cup (M - A)] \cap N^{c}\}$$

$$= [N \cap (A \triangle M)] \cup \{[(A \cap M^{c}) \cup (A^{c} \cap M)] \cap N^{c}\}$$

$$= [N \cap (A \triangle M)] \cup (A \cap M^{c} \cap N^{c}) \cup (A^{c} \cap M \cap N^{c})$$

$$= [N \cap (A \triangle M)] \cup (A \cap M^{c} \cap N^{c})$$

(since $M \subseteq N$ implies $N^{c} \subseteq M^{c}$ and hence $M \cap N^{c} = \emptyset$)

$$= [N \cap (A \triangle M)] \cup (A \cap N^{c}) (\text{since } N^{c} \subseteq M^{c})$$

$$= (A - N) \cup [N \cap (A \triangle M)].$$

(ii) $A \cup M = [(A - N) \cup (A \cap N)] \cup M$

$$= (A - N) \cup [(A \cap N) \cup M]$$

$$= (A - N) \cup [(A \cap N) \cup (M \cap N)] (\text{since } M \subseteq N)$$

$$= (A - N) + [(A \cup M) \cap N]$$

$$= (A - N) \triangle [N \cap (A \cup M)]$$

(since for B and C with $B \cap C = \emptyset, B + C = B \triangle C$).

(iii) Let $B \in \mathcal{A}^*$. Then $B = A \triangle M$ for some $A \in \mathcal{A}$ and $M \subseteq N, N \in \mathcal{A}$ with $\mu(N) = 0$. By part (i), $B = A \triangle M = (A - N) \cup [N \cap (A \triangle M)]$ with $(A - N) \in \mathcal{A}$ and $N \cap (A \triangle M) \subseteq N$. That is, *B* is of the form $A \cup M$ with *A* replaced by A - N (a member of \mathcal{A}) and *M* replaced by $N \cap (A \triangle M)$ (which is a subset of *N* with $N \in \mathcal{A}$ and $\mu(N) = 0$). It follows that $B \in \overline{\mathcal{A}}$. Next, let $B \in \overline{\mathcal{A}}$. Then $B = A \cup M$ for some $A \in \mathcal{A}$ and some $M \subseteq N$ with $N \in \mathcal{A}$ and $\mu(N) = 0$. By part (ii), $B = A \cup M = (A - N) \triangle [N \cap (A \cup M)]$ with $(A - N) \in \mathcal{A}$ and $N \cap (A \cup M) \subseteq N$. That is, *B* is of the form $A \cup M$ with *A* replaced by A - N (a member of \mathcal{A}) and *M* replaced by $N \cap (A \cup M)$ (which is a subset of $N \in \mathcal{A}$ and $\mu(N) = 0$). It follows that $B \in \mathcal{A}^*$. Therefore $\mathcal{A}^* = \overline{\mathcal{A}}$.

Note: Parts (i) and (ii) are also established by showing that each side is contained in the other. This is done as follows.

- (i) Let ω belong to the left-hand side; i.e., $\omega \in A \triangle M$, so that $\omega \in A$ and $\omega \notin M$. That $\omega \notin M$ implies that either $\omega \notin N$ or $\omega \in N$. If $\omega \notin N$, then $\omega \in (A N)$, so that ω belongs to the right-hand side. If $\omega \in N$, then $\omega \in [N \cap (A \triangle M)]$, so that ω belongs to the right-hand side again. Next, let ω belong to the right-hand side. Then $\omega \in (A - N)$ or $\omega \in [N \cap (A \triangle M)]$. If $\omega \in (A - N)$, then $\omega \in A$ and $\omega \notin N$, so that $\omega \in A$ and $\omega \notin M$. It follows that ω belongs to the left-hand side. On the other hand, if $\omega \in [N \cap (A \triangle M)]$, then $\omega \in (A \triangle M)$, so that ω belongs to the left-hand side.
- (ii) Let ω belong to the left-hand side; i.e., $\omega \in A \cup M$, so that $\omega \in A$ and $\omega \in M$ or to both. Let $\omega \in A$. Also, either $\omega \in N$ or $\omega \notin N$. If $\omega \in N$, then $\omega \in [N \cap (A \cup M)]$, so that ω belongs to the right-hand side. If $\omega \notin N$, then $\omega \in (A N)$, so that ω belongs to the right-hand side again. Finally, let $\omega \in M$. Then $\omega \in N$ and hence $\omega \in [N \cap (A \cup M)]$, so that ω belongs to the right-hand side again.

Next, let ω belong to the right-hand side. Then either $\omega \in (A - N)$ or $\omega \in [N \cap (A \cup M)]$. Let $\omega \in (A - N)$. Then $\omega \in A$ and $(\omega \notin N)$, so that ω belongs to the left-hand side. If $\omega \in [N \cap (A \cup M)]$, then $\omega \in (A \cup M)$, so that ω belongs to the left-hand side. #

16. $\bar{\mathcal{A}}(=\mathcal{A}^*) \neq \oslash$ since, e.g., $\Omega = \Omega \cup \oslash$, $\Omega \in \mathcal{A}$, $\mu(\oslash) = 0$, so that $\Omega \in \bar{\mathcal{A}}$. Next, for $B \in \bar{\mathcal{A}}$ to show that $B^c \in \bar{\mathcal{A}}$. Now $B \in \bar{\mathcal{A}}$ implies $B = A \cup M$, $A \in \mathcal{A}$, $M \subseteq N \in \mathcal{A}$, $\mu(N) = 0$. Then

$$B^{c} = (A \cup M)^{c} = A^{c} \cap M^{c}$$

= $A^{c} \cap [M^{c} \cap (N \cup N^{c})]$
= $A^{c} \cap [(M^{c} \cap N) \cup (M^{c} \cap N^{c})]$
= $A^{c} \cap [(M^{c} \cap N) \cup N^{c}]$ (since $M \subseteq N$ implies $N^{c} \subseteq M^{c}$)
= $(A^{c} \cap N^{c}) \cup (N \cap M^{c} \cap A^{c})$

17.

with $A^c \cap N^c \in \mathcal{A}$ and $N \cap M^c \cap A^c \subseteq N$. That is, B^c is of the form $A \cup M$ with A (a member of \mathcal{A}) replaced by $A^c \cap N^c$ and $M (\subseteq N \in \mathcal{A} \text{ with } \mu(N) = 0)$ replaced by $N \cap M^c \cap A^c$. It follows that $B^c \in \overline{\mathcal{A}}$. Finally, let $B_i \in \overline{\mathcal{A}}$, i = 1, 2, ... Then $B_i = A_i \cup M_i$ with $A_i \in \mathcal{A}$ and $M_i \subseteq N_i \in \mathcal{A}$ with $\mu(N_i) = 0$, $i \ge 1$. Therefore

$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} (A_i \cup M_i) = (\bigcup_{i=1}^{\infty} A_i) \cup (\bigcup_{i=1}^{\infty} M_i) \text{ with } \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$$

and $\bigcup_{i=1}^{\infty} M_i \subseteq \bigcup_{i=1}^{\infty} N_i$, a member of \mathcal{A} with $\mu(\bigcup_{i=1}^{\infty} N_i) = 0$. It follows that $\bigcup_{i=1}^{\infty} B_i$ belongs in $\overline{\mathcal{A}}$, and $\overline{\mathcal{A}}$ is a σ -field. #

- (i) In the first place, the definition $\mu^*(A \triangle M) = \mu(A)$ implies $\mu^*(A \cup M) = \mu(A)$. Indeed, $A \cup M = (A N) \triangle [N \cap (A \cup M)]$ with $(A N) \in A$ and $N \cap (A \cup M) \subseteq N \in A$, $\mu(N) = 0$. Therefore $\mu^*(A \cup M) = \mu(A N) = \mu(A \cap N^c) = \mu(A \cap N^c) + \mu(A \cap N) = \mu[(A \cap N^c) \cup (A \cap N)] = \mu(A)$. In the process of the proof, we also have seen that $\mu(A N) = \mu(A)$.
- (ii) As it was just seen, $\mu^*(A \cup M) = \mu(A N) = \mu(A)$. We show that μ^* so defined on \mathcal{A}^* is well-defined. That is, if $B = A_1 \cup M_1 = A_2 \cup M_2$, then $\mu(A_1) = \mu(A_2)$. Indeed,

$$A_1 = (A_1 \cap A_2) + (A_1 \cap A_2^c) = (A_1 \cap A_2) \triangle (A_1 \cap A_2^c).$$

Next, $A_1 \cap A_2^c \subseteq M_2$, because $x \in (A_1 \cap A_2^c)$ implies $x \in A_1$ and $x \notin A_2$, hence $x \in (A_1 \cup M_1)$ and $x \notin A_2$, so that $x \in B$ and $x \notin A_2$. This implies that $x \in (A_2 \cup M_2)$ and $x \notin A_2$, so that $x \in M_2$. Thus, $A_1 \cap A_2^c \subseteq M_2 \subseteq N_2$. From this and the fact that $B = (A_1 \cap A_2) \triangle (A_1 \cap A_2^c)$, it follows that $\mu^*(B) = \mu(A_1 \cap A_2) (= \mu(A_1))$. Likewise, $A_2 = (A_1 \cap A_2) \triangle (A_1^c \cap A_2)$ with $A_1^c \cap A_2 \subseteq M_1 \subseteq N_1$, so that $\mu^*(B) = \mu(A_1 \cap A_2) (= \mu(A_2))$. It follows that $\mu(A_1) = \mu(A_2)$ and μ^* is well-defined.

(iii) Clearly, $\mu^*(\oslash) = \mu^*(\oslash \triangle \oslash) = \mu(\oslash) = 0$, and $\mu^*(A \cup M) = \mu(A)$ (as was seen in part (i)) and this is ≥ 0 . Finally, let $B_i \in \overline{A}, i = 1, 2, ..., B_i \cap B_i = \oslash, i \ne j$. Then $B_i = A_i \cup M_i, B_j = A_j \cup M_j$, and

$$\oslash = B_i \cap B_j = (A_i \cap A_j) \cup (A_i \cap M_j) \cup (M_i \cap A_j) \cup (M_i \cap M_j),$$

so that $A_i \cap A_j = \emptyset$. Therefore

$$\mu^* \left(\sum_{i=1}^{\infty} B_i \right) = \mu^* \begin{bmatrix} \infty \\ \cup \\ i=1 \end{bmatrix} (A_i \cup M_i) = \mu^* \begin{bmatrix} \left(\bigcup_{i=1}^{\infty} A_i \right) \cup \left(\bigcup_{i=1}^{\infty} M_i \right) \end{bmatrix}$$
$$= \mu \left(\bigcup_{i=1}^{\infty} A_i \right) = \mu \left(\sum_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \mu \left(A_i \right)$$

$$= \sum_{i=1}^{\infty} \mu^* (A_i \cup M_i)$$
$$= \sum_{i=1}^{\infty} \mu^* (B_i).$$

It follows that μ^* is a measure on $\overline{A}(=A^*)$. #

- 18. (i) Let B ∈ Ĉ and suppose that B = A for some A ∈ A. Then B = A △⊘ with ⊘ ∈ A and µ(⊘) = 0, so that B ∈ A*. If B ⊆ N for some N ∈ A with µ(N) = 0, we have B = B △⊘ with ⊘ ∈ A and B ⊆ N ∈ A with µ(N) = 0, so that B ∈ A*. Thus Ĉ ⊆ A*.
 - (ii) $\hat{\mathcal{C}} \subseteq \mathcal{A}^*$ implies that $\sigma(\hat{\mathcal{C}}) = \hat{\mathcal{A}} \subseteq \mathcal{A}^*$, so it suffices to show that $\mathcal{A}^* \subseteq \hat{\mathcal{A}}$. Let $B \in \mathcal{A}^*$, so that $B = A \Delta M$ with $A \in \mathcal{A}$ and $M \subseteq N, N \in \mathcal{A}$, $\mu(N) = 0$. Since $A = A \Delta \oslash$, it follows that $A \in \hat{\mathcal{C}}$ and hence $A \in \hat{\mathcal{A}}$. Also, $M = \oslash \Delta M$, so that $M \in \hat{\mathcal{C}}$ and hence $M \in \hat{\mathcal{A}}$. Thus, $A, M \in \hat{\mathcal{A}}$ and therefore $A \Delta M \in \hat{\mathcal{A}}$ or $B \in \hat{\mathcal{A}}$. #
- **19.** Let $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, and let $\mathcal{A} = \{\emptyset, \{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}, \{\omega_1, \omega_2, \omega_3, \omega_4\}\}$. Then \mathcal{A} is, trivially, a σ -field. On \mathcal{A} , define μ as follows: $\mu(\emptyset) = 0 = \mu(\{\omega_1, \omega_2\})$, $\mu(\{\omega_3, \omega_4\}) = \mu(\{\omega_1, \omega_2, \omega_3, \omega_4\}) = 1$. Then, clearly, μ is a measure on \mathcal{A} . But $\{\omega_1\} \subset \{\omega_1, \omega_2\} \in \mathcal{A}$ with $\mu(\{\omega_1, \omega_2\}) = 0$ whereas $\{\omega_1\} \notin \mathcal{A}$. #
- **20.** Recall that μ^0 is an outer measure on $\mathcal{P}(\Omega)$ if $\mu^0(\emptyset) = 0$, μ^0 is \uparrow and sub- σ -additive. Now, let $N \in \mathcal{A}^0$ with $\mu^0(N) = 0$, and let M be an arbitrary subset of N. To show that $M \in \mathcal{A}^0$. It suffices to show that $\mu^0(D) \ge \mu^0(M \cap D) + \mu^0(M^c \cap D)$ for every $D \subseteq \Omega$. We have: $M \subseteq N$, hence $M \cap D \subseteq N \cap D$ and $\mu^0(M \cap D) \le \mu^0(N \cap D) = 0$, so that $\mu^0(M \cap D) = 0$. Next, $M^c \cap D \subseteq D$ and $\mu^0(M^c \cap D) \le \mu^0(D)$, so that $\mu^0(D) \ge \mu^0(M \cap D) + \mu^0(M^c \cap D)$ for every $D \subseteq \Omega$. #
- **21.** On \mathcal{B} , define μ in the following manner: $\mu(B) =$ number of integers in B. Then, clearly, μ is a measure satisfying the condition $\mu(\text{finite interval}) < \infty$. Next, let $x_n \uparrow -2$, so that $\mu((x_n, 0]) = 3$ for all sufficiently large n, and hence $F_c(x_n) = c - 3$ for all sufficiently large n. But $F_c(-2) = c - \mu((-2, 0]) = c - 2$. Hence F_c is not left-continuous. #
- 22. Indeed, if µ were additive, then c = µ(⊘) = µ(⊘ ∪ ⊘) = µ(⊘) + µ(⊘) = 2c, so that 2 = 1, a contradiction. #
- **23.** For n = 2, let μ_1 and μ_2 be σ -finite, and let $\{A_1^1, A_2^1, \ldots\}$ and $\{A_1^2, A_2^2, \ldots\}$ be the associated partitions for which $\mu_1(A_i^1) < \infty$, $\mu_2(A_i^2) < \infty$, $i \ge 1$. Then $\{A_i^1 \cap A_j^2, i, j \ge 1\}$ is a partition of Ω and $\mu(A_i^1 \cap A_j^2) = \mu_1(A_i^1 \cap A_j^2) + \mu_2(A_i^1 \cap A_j^2) < \infty$, $i, j \ge 1$, so that μ is σ -finite.

Next, assume the assertion to be true for n = k and we will establish it for n = k + 1. By setting $\mu_0 = \mu_1 + \ldots + \mu_k$, we have that both μ_0 and μ_{k+1} are σ -finite, and let $\{B_i, i \ge 1\}$ and $\{A_i^{k+1}, i \ge 1\}$ be the associated partitions for which $\mu_0(B_i) < \infty$, $\mu_{k+1}(A_i^{k+1}) < \infty$, $i \ge 1$. Then $\{B_i \cap A_j^{k+1}, i, j \ge 1\}$

is a partition of Ω , and $\mu_0(B_i \cap A_j^{k+1}) \le \mu_0(B_i) < \infty$, $\mu_{k+1}(B_i \cap A_j^{k+1}) \le \mu_{k+1}(A_j^{k+1}) < \infty$, $i, j \ge 1$. Thus,

$$(\mu_1 + \dots + \mu_{k+1})(B_i \cap A_j^{k+1}) = (\mu_1 + \dots + \mu_k)(B_i \cap A_j^{k+1}) + \mu_{k+1}(B_i \cap A_j^{k+1}) < \infty, \ i, j \ge 1, \text{ so that}$$

 $\mu_1 + \ldots + \mu_{k+1}$ is σ -finite. #

24. (i) Clearly,
$$(A \cap B^c) \cup (A^c \cap B) = A \triangle B = (A \cup B) - (A \cap B)$$
. Hence

$$B[(A \cap B^c) \cup (A^c \cap B)] = B[(A \cup B) - (A \cap B)]$$

$$P[(A \cap B^{\circ}) \cup (A^{\circ} \cap B)] = P[(A \cup B) - (A \cap B)]$$

= $P(A \cup B) - P(A \cap B)$ (since $A \cap B \subseteq A \cup B$)
= $P(A) + P(B) - P(A \cap B) - P(A \cap B)$
= $P(A) + P(B) - 2P(A \cap B)$.

(ii) We will use the induction hypothesis. For n = 2, we have:

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2),$$

so that

$$P(A_1 \cap A_2) = P(A_1) + P(A_2) - P(A_1 \cup A_2)$$

$$\geq P(A_1) + P(A_2) - 1.$$

Next, assume it to be true for n = k and establish it for n = k + 1. Indeed,

$$P(A_1 \cap \ldots \cap A_{k+1}) = P[(A_1 \cap \ldots \cap A_k) \cap A_{k+1}]$$

$$\geq P(A_1 \cap \ldots \cap A_k) + P(A_{k+1}) - 1$$

$$\geq \sum_{i=1}^k P(A_i) - (k-1) + P(A_{k+1}) - 1$$

$$= \sum_{i=1}^{k+1} P(A_i) - [(k+1) - 1]. \#$$

25. $\underbrace{\lim_{n\to\infty}}_{n\to\infty}A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} \{\omega_2\} = \{\omega_2\}, \overline{\lim_{n\to\infty}}A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} \{\omega_1, \omega_2, \omega_3\} = \{\omega_1, \omega_2, \omega_3\}, \text{ so that } P(\underline{\lim_{n\to\infty}}A_n) = P(\{\omega_2\}) = \frac{1}{3}, P(\overline{\lim_{n\to\infty}}A_n) = P(\{\omega_1, \omega_2, \omega_3\}) = \frac{7}{10}; \text{ also, } P(A_{2n-1}) = P(\{\omega_1, \omega_2\}) = \frac{1}{2}, P(A_{2n}) = P(\{\omega_2, \omega_3\}) = \frac{8}{5}, \text{ so that } \underline{\lim_{n\to\infty}}P(A_n) = \frac{1}{2} \text{ and } \overline{\lim_{n\to\infty}}P(A_n) = \frac{8}{5}.$

$$P(\lim_{n \to \infty} A_n) = \frac{1}{3} \neq \frac{1}{2} = \lim_{n \to \infty} P(A_n),$$

and

$$P(\overline{\lim_{n \to \infty}} A_n) = \frac{7}{10} \neq \frac{8}{5} = \overline{\lim_{n \to \infty}} P(A_n). \#$$

- (i) If {ω_i} ∈ A for all ω_i, then, clearly, every subset of Ω is in A, so that A = P(Ω). On the other hand, if A = P(Ω), then all subjects of Ω are in A, and in particular, so are {ω_i} for all ω_is.
 - (ii) It is immediate. #
- 27. (i) That μ(A) ≥ 0 and μ(Ø) = 0 are immediate. Next, let A₁,..., A_n be pairwise disjoint. Then to show that μ(∑_{i=1}ⁿ A_i) = ∑_{i=1}ⁿ μ(A_i). If at least one of the A_is is infinite, then ∑_{i=1}ⁿ A_i is infinite, so that μ(∑_{i=1}ⁿ A_i) = ∞. Also, at least one of the terms on the right-hand side is ∞, so that ∑_{i=1}ⁿ μ(A_i) = ∞. On the other hand, if all A₁,..., A_n are finite, then ∑_{i=1}ⁿ A_i is finite and hence μ(∑_{i=1}ⁿ A_i) = 0. The right-hand side is also equal to 0 since each term is 0. Next, μ is not σ-additive, because if all A_is are finite, then ∑_{i=1}[∞] A_i is infinite, so that μ(∑_{i=1}[∞] A_i) = ∞, whereas ∑_{i=1}[∞] μ(A_i) = ∑_{i=1}[∞] 0 = 0.
 (ii) Clearly, Ω = ∪_{n=1}[∞] A_n, where A_n = {ω₁,..., ω_n}, so that A_n ⊂ A_{n+1},
 - (ii) Clearly, $\Omega = \bigcup_{n=1}^{\infty} A_n$, where $A_n = \{\omega_1, \dots, \omega_n\}$, so that $A_n \subset A_{n+1}$, $n \ge 1$, and $\mu(A_n) = 0$ for all *n*. Since $\mu(A_n) = 0$, $n \ge 1$, it follows that $\mu(A_n^c) = \infty$ for all *n*. #
- 28. (i) We have to prove that μ⁰(Ø) = 0, μ⁰(A) ≤ μ⁰(B) for A ⊂ B, and μ⁰ is a sub-σ-additive. That μ⁰(Ø) = 0 holds by the definition of μ⁰. Next, suppose that A ⊂ B. There are three cases to consider. Let B be finite. Then A is finite, and μ⁰(A) = a/(a+1) < b/(b+1) = μ⁰(B) since a < b. Let B be infinite but A be finite. Then μ⁰(A) = a/(a+1) < 1 = μ⁰(B). Finally, let both A and B be infinite. Then μ⁰(A) = 1 ≤ 1 = μ⁰(B). Now to establish sub-σ-additivity:

$$\mu^0(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu^0(A_n).$$

Suppose that at least one of the A_n s is infinite, e.g., A_{n_0} . Then the union $\bigcup_{n=1}^{\infty} A_n$ is infinite, and hence $\mu^0(\bigcup_{n=1}^{\infty} A_n) = 1$, whereas $\sum_{n=1}^{\infty} \mu^0(A_n) \ge 1$, since $\mu^0(A_{n_0}) = 1$ and $\mu^0(A_n) \ge 0$, $n \ge 1$. Next, let all A_n be finite and $\ne \oslash$. Then $\bigcup_{n=1}^{\infty} A_n$ is infinite, so that $\mu^0(\bigcup_{n=1}^{\infty} A_n) = 1$. As for the right-hand side, $\mu^0(A_n) = \frac{a_n}{a_n+1} \ge \frac{1}{2}$ for all n, so that $\sum_{n=1}^{\infty} \mu^0(A_n) = \infty$. Finally, suppose that only finitely many of the A_n s are finite, e.g., A_{n_1}, \ldots, A_{n_k} . Then, clearly, sup $(A_{n_1} \cup \ldots \cup A_{n_k}) \le \sup A_{n_1} + \ldots + \sup A_{n_k}$, so that $\mu^0(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu^0(A_n)$. Therefore μ^0 is an outer measure.

(ii) By Remark 6(i), A is μ^0 -measurable if

$$\mu^0(D) \ge \mu^0(A \cap D) + \mu^0(A^c \cap D)$$
 for every $D \subseteq \Omega$.

Also, by Remark 6(ii), \oslash and Ω are μ^0 -measurable, so to investigate the last inequality for $\oslash \subset A \subset \Omega$. Consider the following possible cases. Let both A and A^c be infinite, and take $D = \Omega$. Then $\mu^0(\Omega) = 1$, but

 $\mu^0(A \cap \Omega) + \mu^0(A^c \cap \Omega) = \mu^0(A) + \mu^0(A^c) = 1 + 1 = 2$, so that the inequality is violated. Let *A* be infinite but *A*^c be finite, and take $D = \Omega$. Then $\mu^0(\Omega) = 1$, but $\mu^0(A \cap \Omega) + \mu^0(A^c \cap \Omega) = \mu^0(A) + \mu^0(A^c) = 1 + \frac{c}{c+1}$, $c = \sup A^c$. Again, the inequality is violated. Finally, let *A* be finite (so that A^c is infinite), and take $D = \Omega$. Once again, $\mu^0(\Omega) = 1$, and $\mu^0(A \cap \Omega) + \mu^0(A^c \cap \Omega) = \mu^0(A) + \mu^0(A^c) = \frac{a}{a+1} + 1$, $a = \sup A$. So, the inequality is violated. The conclusion then is that $\mathcal{A}_0 = \{\emptyset, \Omega\}$. #

29. It is immediate since:

$$P(-X \le -m) = P(X \ge m) \ge \frac{1}{2}$$
, and
 $P(-X \ge -m) = P(X \le m) \ge \frac{1}{2}$. #

30. By symmetry, we have

$$P(X \le x) = P(-X \le x) = P(X \ge -x)$$

= 1 - P(X < -x) \ge 1 - P(X \le -x).

For x = 0, this becomes

$$P(X \le 0) \ge 1 - P(x \le 0), \text{ or } P(x \le 0) \ge \frac{1}{2}.$$

Again, by symmetry,

$$P(X \ge x) = P(-X \ge x) = P(X \le -x).$$

For x = 0, this relation becomes $P(X \ge 0) = P(X \le 0)$. But $P(X \le 0) \ge \frac{1}{2}$ as already shown. Thus, $P(X \ge 0) \ge \frac{1}{2}$, and 0 is a median for X. #

- **31.** From $B \subseteq A \cup B$, we get $\mu^0(B) \leq \mu^0(A \cup B)$. However, $\mu^0(A \cup B) \leq \mu^0(A) + \mu^0(B) = \mu^0(B)$ (by the sub-additivity property of μ^0). Thus, $\mu^0(B) \leq \mu^0(A \cup B) \leq \mu^0(B)$, so that $\mu^0(A \cup B) = \mu^0(B)$. #
- **32.** Let $N = (f \neq g)$, and let $B \in \mathcal{B}$. Then $f^{-1}(B) \in \mathcal{A}$, by assuming that, e.g., f is measurable. Also, $g^{-1}(B) = \{[g^{-1}(B)] \cap N\} \cup \{[g^{-1}(B)] \cap N^c\} = \{[g^{-1}(B)] \cap N\} \cup f^{-1}(B) \text{ (since } f = g \text{ on } N^c). \text{ But } [g^{-1}(B)] \cap N \subseteq N \text{ with} \mu(N) = 0$. Thus, $[g^{-1}(B)] \cap N$ is in \mathcal{A} , and hence $g^{-1}(B)$ is in \mathcal{A} . It follows that g is measurable. #
- **33.** Indeed, $B \in \mathcal{B}$, we have $f^{-1}(B) \subseteq A$ with $\mu[f^{-1}(B)] = 0$, so that $f^{-1}(B) \in \mathcal{A}$, and hence *f* is measurable. #
- **34.** (i) We have to show that μ is nonnegative, $\mu(\emptyset) = 0$, and μ is σ -additive. Indeed, $\mu(A) = \mu_1(A) + \mu_2(A) \ge 0$; $\mu(\emptyset) = \mu_1(\emptyset) + \mu_2(\emptyset) = 0$; $\mu(\sum_{i=1}^{\infty} A_i) = \mu_1(\sum_{i=1}^{\infty} A_i) + \mu_2(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu_1(A_i) + \sum_{i=1}^{\infty} \mu_2(A_i) = \sum_{i=1}^{\infty} (\mu_1 + \mu_2)(A_i) = \sum_{i=1}^{\infty} \mu(A_i).$

- (ii) Suppose that, e.g., μ₁ is complete, or more properly, A is complete with respect to μ₁, which means that A contains all subsets of the μ₁-null sets. So, let A ∈ A with μ(A) = 0. Then μ₁(A)(= μ₂(A)) = 0. Thus, for an arbitrary B ⊆ A, we have μ₁(B) ≤ μ₁(A) = 0 and B ∈ A. It follows that μ(B) ≤ μ(A) = 0, so that μ is complete. #
- **35.** (i) Unions of any two members of C_2 produce elements in C_2 except for two new elements; namely,

$$(A \cap B) \cup (A^c \cap B^c)$$
 and $(A \cap B^c) \cup (A^c \cap B)$.

Beyond the obvious results, we have:

 $A \cup (A^c \cap B) = A \cup B, A \cup (A^c \cap B^c) = A \cup B^c;$ $A^c \cup (A \cap B) = A^c \cup B, A^c \cup (A \cap B^c) = A^c \cup B^c;$ $B \cup (A \cap B^c) = A \cup B, B \cup (A^c \cap B^c) = A^c \cup B;$ $B^c \cup (A \cap B) = A \cup B^c, B^c \cup (A^c \cap B) = A^c \cup B^c;$ $(A \cap B) \cup (A^c \cap B^c) \text{ new element,}$ $(A \cap B^c) \cup (A^c \cup B^c) = (A \cap B) \cup (A \cap B)^c = \Omega;$ $(A \cap B^c) \cup (A^c \cup B) = \Omega;$ $(A^c \cap B^c) \cup (A \cup B) = (A \cup B)^c \cup (A \cup B) = \Omega.$

(ii) Closeness under complementation is immediate for all elements except, perhaps, for the last two, each of which is the complement of the other. Indeed,

$$[(A \cap B) \cup (A^c \cap B^c)]^c = (A^c \cup B^c) \cap (A \cup B)$$
$$= [(A^c \cup B^c) \cap A] \cup [(A^c \cup B^c) \cap B]$$
$$= (A \cap B^c) \cup (A^c \cap B).$$

In checking closeness under unions, it suffices to restrict ourselves to forming unions of two elements, one taken from each one of the classes:

> $\{(A \cap B) \cup (A^c \cap B^c), (A \cap B^c) \cup (A^c \cap B)\},\$ $\{A, A^c, B, B^c, A \cap B, A \cap B^c, A^c \cap B, A^c \cap B^c\},\$

as well as any two elements from the second class above. To this end, and except for the obvious results, we have:

$$A \cup [(A \cap B) \cup (A^c \cap B^c)] = A \cup (A^c \cap B^c) = A \cup B^c;$$

$$A \cup [(A \cap B^c) \cup (A^c \cap B)] = A \cup (A^c \cap B) = A \cup B;$$

$$A^c \cup [(A \cap B) \cup (A^c \cap B^c)] = A^c \cup (A \cap B) = A^c \cup B;$$

$$A^c \cup [(A \cap B^c) \cup (A^c \cap B)] = A^c \cup (A \cap B^c) = A^c \cup B^c;$$

$$B \cup [(A \cap B) \cup (A^c \cap B^c)] = B \cup (A^c \cap B^c) = A^c \cup B;$$

$$B \cup [(A \cap B^c) \cup (A^c \cap B)] = B \cup (A \cap B^c) = A \cup B;$$

$$B^c \cup [(A \cap B) \cup (A^c \cap B^c)] = B^c \cup (A \cap B) = A \cup B^c;$$

$$B^c \cup [(A \cap B^c) \cup (A^c \cap B)] = B^c \cup (A \cap B^c) = B^c;$$

$$(A \cap B) \cup (A^c \cup B^c) = (A \cap B) \cup (A \cap B)^c = \Omega,$$

$$(A \cap B) \cup [(A \cap B^c) \cup (A^c \cap B)] = A \cup (A^c \cap B) = A \cup B;$$

$$(A \cap B^c) \cup [(A \cap B) \cup (A^c \cap B^c)] = A \cup (A^c \cap B^c) = A \cup B^c;$$

$$(A^c \cap B) \cup [(A \cap B) \cup (A^c \cap B^c)] = A^c \cup (A \cap B) = A^c \cup B;$$

$$(A^c \cap B^c) \cup [(A \cap B) \cup (A^c \cap B^c)] = A^c \cup (A \cap B) = A^c \cup B;$$

$$(A^c \cap B^c) \cup (A \cup B) = (A \cup B)^c \cup (A \cup B) = \Omega,$$

$$(A^c \cap B^c) \cup [(A \cap B^c) \cup (A^c \cap B)] = B^c \cup (A^c \cap B) = A^c \cup B^c.$$

Again, except for the obvious results, we have:

$$(A \cup B) \cup [(A \cap B) \cup (A^c \cap B^c)] = (A \cup B) \cup (A^c \cap B^c)$$

= $(A \cup B) \cup (A \cup B)^c = \Omega;$
 $(A \cup B^c) \cup [(A \cap B^c) \cup (A^c \cap B)] = (A \cup B^c) \cup (A^c \cap B) = \Omega;$
 $(A^c \cup B) \cup [(A \cap B^c) \cup (A^c \cap B)] = (A^c \cup B) \cup (A \cap B^c) = \Omega;$
 $(A^c \cup B^c) \cup [(A \cap B) \cup (A^c \cap B^c)] = (A^c \cup B^c) \cup (A \cap B)$
= $(A \cup B)^c \cup (A \cap B) = \Omega. \#$

Chapter 3

Some Modes of Convergence of a Sequence of Random Variables and their Relationships

1. Indeed, $|X_n - X| = (X_n - X)^+ + (X_n - X)^-$, so that $(X_n - X)^+ \le |X_n - X|$, $(X_n - X)^- \le |X_n - X|$. Hence, for every $\varepsilon > 0$, $\mu[(X_n - X)^+ \ge \varepsilon] \le \mu[|X_n - X| \ge \varepsilon]$ $\varepsilon] \xrightarrow{\to \infty} 0$, and likewise, $\mu[(X_n - X)^- \ge \varepsilon] \le \mu[|X_n - X| \ge \varepsilon] \xrightarrow{\to \infty} 0$. Next, recall that (Exercise 28, Chapter 1) that for any two r.v.s X and Y, $(X + Y)^+ \le X^+ + Y^+$ and $(X + Y)^- \le X^- + Y^-$. Hence $X^+ - ((X - X) + X)^+ \le (X - X)^+ + X^+$

$$X_n^+ = ((X_n - X) + X)^+ \le (X_n - X)^+ + X_n^+ = (X_n - X)^- + X_n^+,$$

$$X^+ = ((X - X_n) + X_n)^+ \le (X - X_n)^+ + X_n^+ = (X_n - X)^- + X_n^+,$$

because, as is easily seen, $(-Z)^+ = Z^-$. Then

$$-(X_n - X)^- \le X_n^+ - X^+ \le (X_n - X)^+,$$

or $|X_n^+ - X^+| \le (X_n - X)^+ + (X_n - X)^- = |X_n - X|$, and therefore $\mu(|X_n^+ - X^+| \ge \varepsilon) \le \mu(|X_n - X| \ge \varepsilon) \underset{n \to \infty}{\longrightarrow} 0,$

so that $X_n^+ \xrightarrow[n \to \infty]{\mu} X^+$. Likewise, $X_n^- \xrightarrow[n \to \infty]{\mu} X^-$. #