Chapter 2

Spatial Descriptions and Transformations

Exercises

2.1) $R=\operatorname{rot}(\hat{x}, \phi) \operatorname{rot}(\hat{z}, \theta)$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \phi & -S \phi \\
0 & S \phi & C \phi
\end{array}\right]\left[\begin{array}{ccc}
C \theta & -S \theta & 0 \\
S \theta & C \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
C \theta & -S \theta & 0 \\
C \phi S \theta & C \phi C \theta & -S \phi \\
S \phi S \theta & S \phi C \theta & C \phi
\end{array}\right]
\end{aligned}
$$

2.2) $R=\operatorname{rot}\left(\hat{x}, 45^{\circ}\right) \operatorname{rot}\left(\hat{y}, 30^{\circ}\right)$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & .707 & -.707 \\
0 & .707 & .707
\end{array}\right]\left[\begin{array}{ccc}
.866 & 0 & .5 \\
0 & 1 & 0 \\
-.5 & 0 & .866
\end{array}\right] \\
& =\left[\begin{array}{ccc}
.866 & 0 & .5 \\
.353 & .707 & -.612 \\
-.353 & .707 & .612
\end{array}\right]
\end{aligned}
$$

2.3) Since rotations are performed about axes of the frame being rotated, these are Euler-Angle style rotations:
$R=\operatorname{rot}(\hat{z}, \theta) \operatorname{rot}(\hat{x}, \phi)$
We might also use the following reasoning:
${ }_{B}^{A} R(\theta, \phi)={ }_{A}^{B} R^{-1}(\theta, \phi)$
$=[\operatorname{rot}(\hat{x},-\phi) \operatorname{rot}(\hat{z},-\theta)]^{-1}$
$=\operatorname{rot}^{-1}(\hat{z},-\theta) \operatorname{rot}^{-1}(\hat{x},-\phi)$
$=\operatorname{rot}(\hat{z}, \theta) \operatorname{rot}(\hat{x}, \phi)$
Yet another way of viewing the same operation:
1 st rotate by $\operatorname{rot}(\hat{z}, \theta)$
2nd rotate by $\operatorname{rot}(\hat{z}, \theta) \operatorname{rot}(\hat{x}, \phi) \operatorname{rot}^{-1}(z, \theta)$
2.3) (continued)
(This is a similarity transform)
Composing these two rotations:

$$
\begin{aligned}
& =\operatorname{rot}(\hat{z}, \theta) \operatorname{rot}(\hat{x}, \phi) \operatorname{rot}^{-1}(z, \theta) \cdot \operatorname{rot}(\hat{z}, \theta) \\
& =\operatorname{rot}(\hat{z}, \theta) \operatorname{rot}(\hat{x}, \phi) \\
& =\left[\begin{array}{ccc}
C \theta & -S \theta & 0 \\
S \theta & C \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \phi & -S \phi \\
0 & S \phi & C \phi
\end{array}\right] \\
& =\left[\begin{array}{ccc}
C \theta & -S \theta C \phi & S \theta S \phi \\
S \theta & C \theta C \phi & -C \theta S \phi \\
0 & S \phi & C \phi
\end{array}\right]
\end{aligned}
$$

2.4) This is the same as 2.3 only with numbers.
$R=\operatorname{rot}\left(\hat{z}, 30^{\circ}\right) \operatorname{rot}(\hat{x}, 45)$

$$
=\left[\begin{array}{rrr}
.866 & -.353 & .353 \\
.50 & .612 & -.612 \\
0 & .707 & .707
\end{array}\right]
$$

2.5) If V_{i} is an eigenvector of R, then
$R V_{i}=7 V_{i}$
If the eigenvalue associated with V_{i} is 1 , then
$R V_{i}=V_{i}$
Hence the vector is not changed by the rotation R.
So V_{i} is the axis of rotation.
2.6) Imagine a frame $\{A\}$ whose \hat{z} axis is aligned with the direction \hat{k} :

Then, the rotation with rotates vectors about \hat{k} by θ degrees could be written:
$R={ }_{A}^{U} R \operatorname{rot}\left({ }^{A} \hat{z}, \theta\right){ }_{U}^{A} R \quad[1]$

We write the description of $\{A\}$ in $\{U\}$ as:
${ }_{A}^{U} R=\left[\begin{array}{lll}A & D & K_{x} \\ B & E & K_{y} \\ C & F & K_{z}\end{array}\right]$
If we multiply out Eq. [1] above, and then simplify
using $A^{2}+B^{2}+C^{2}=1, D^{2}+E^{2}+F^{2}=1,[A B C]$.
$[D E F]=0,[A B C] \otimes[D E F]=\left[K_{x} K_{y} K_{z}\right]$ we arrive
at Eq. (2.80) in the book. Also, see [R. Paul]*
page 25 .
2.7) Let $R=\left[\begin{array}{lll}R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33}\end{array}\right]$
(1) Compute $R_{11}+R_{22}+R_{33}=N$
(2) If $N=3$, then $\theta=A \cos \left(\frac{N-1}{2}\right)=0^{\circ}$. Since rotation is zero, \hat{K} is arbitrary.
(3) If $N=-1$, then $\theta=A \cos (-1)=180^{\circ}$. In this case Eq. (2.80) becomes:

$$
\operatorname{rot}\left(\hat{K}, 180^{\circ}\right)=\left[\begin{array}{ccc}
2 K_{x}^{2}-1 & 2 K_{x} K_{y} & 2 K_{x} K_{z} \\
2 K_{x} K_{y} & 2 K_{y}^{2}-1 & 2 K_{y} K_{z} \\
2 K_{x} K_{z} & 2 K_{y} K_{z} & 2 K_{z}^{2}-1
\end{array}\right]
$$

so:

$$
2 K_{x}^{2}-1=R_{11} \Rightarrow K_{x}= \pm \sqrt{\left(R_{11}+1\right) / 2}
$$

$$
2 K_{x} K_{y}=R_{21} \Rightarrow K_{y}=R_{12} / 2 K_{x}
$$

$$
2 K_{x} K_{z}=R_{31} \Rightarrow K_{z}=R_{31} / 2 K_{x}
$$

However, if $K_{x} \cong 0$, then this is ill-defined, so use a different column for solution (not the first column as above).
(4) If $-1<N<3$ (so that $0<\theta<180^{\circ}$) the use Eq. (2.82) in book.
2.8) Procedure RMTOAA is given essentially in the solution to 2.7 . However, writing clean code to check the various cases is a good exercise in itself. Procedure AATORM is given by Eq. (2.80) and is easy.
2.9) The subroutines encode Eq. (2.64) and equations (2.66), (2.67), and (2.68).
2.10) The subroutines follow from eq. (2.72) and equations
(2.74), (2.75), and (2.76).
2.11) When they represent rotations about the same axis.
2.12) Velocity is a "free vector" and only will be affected by rotation, and not by translation:

$$
\begin{aligned}
& { }^{A} V={ }_{B}^{A} R^{B} V=\left[\begin{array}{ccc}
0.866 & -0.5 & 0 \\
0.5 & 0.866 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right] \\
& { }^{A} V=\left[\begin{array}{lll}
-1.34 & 22.32 & 30.0
\end{array}\right]^{T}
\end{aligned}
$$

2.13) By just following arrows, and reversing (by inversion) where needed, we have:
${ }_{C}^{B} T={ }_{A}^{B} T{ }_{A}^{U} T^{-1}{ }_{U}^{C} T^{-1}$
Inverting a transform is done using eq. (2.40) in book. Rest is boring.

2.14) This rotation can be written as:
${ }_{B}^{A} T=\operatorname{trans}\left({ }^{A} \hat{P},\left|\left.\right|^{A} P\right|\right) \operatorname{rot}(\hat{K}, \theta) \operatorname{trans}\left(-{ }^{A} \hat{P},\left|\left.\right|^{A} P\right|\right)$
Where $\operatorname{rot}(\hat{K}, \theta)$ is written as in eq. (2.77),
And $\operatorname{trans}\left({ }^{A} \hat{P},\left|{ }^{A} P\right|\right)=\left[\begin{array}{cccc}1 & 0 & 0 & P_{x} \\ 0 & 1 & 0 & P_{y} \\ 0 & 0 & 1 & P_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$
And $\quad \operatorname{trans}\left(-{ }^{A} \hat{P},\left|{ }^{A} P\right|\right)=\left[\begin{array}{cccc}1 & 0 & 0 & -P_{x} \\ 0 & 1 & 0 & -P_{y} \\ 0 & 0 & 1 & -P_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$
Multiplying out we get:
${ }_{B}^{A} T=\left[\begin{array}{ccc:c}R_{11} & R_{12} & R_{13} & Q_{x} \\ R_{21} & R_{22} & R_{23} & Q_{y} \\ R_{31} & R_{32} & R_{33} & Q_{2} \\ \hdashline 0 & 0 & 0 & 1\end{array}\right]$
where the $R_{i j}$ are given be eq. (2.77). And:

$$
\begin{aligned}
Q_{x}= & P_{x}-P_{x}\left(K_{x}^{2} V \theta+C \theta\right)-P_{y}\left(K_{x} K_{y} V \theta-K_{z} S \theta\right) \\
& -P_{z}\left(K_{x} K_{z} V \theta+K_{y} S \theta\right) \\
Q_{y}= & P_{y}-P_{x}\left(K_{x} K_{y} V \theta+K_{z} S \theta\right)-P_{y}\left(K_{y}^{2} V \theta+C \theta\right) \\
& -P_{z}\left(K_{y} K_{z} V \theta+K_{x} S \theta\right) \\
Q_{z}= & P_{z}-P_{x}\left(K_{x} K_{z} V \theta-K_{y} S \theta\right)-P_{y}\left(K_{y} K_{z} V \theta+K_{x} S \theta\right) \\
& -P_{z}\left(K_{z}^{2} V \theta+C \theta\right)
\end{aligned}
$$

2.15) Recall that $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

$$
\begin{aligned}
& \text { so } e^{K \theta}=I+K \theta+\frac{1}{2!} K^{2} \theta^{2}+\frac{1}{3!} K^{3} \theta^{3}+\cdots \\
& K^{2}=\left[\begin{array}{ccc}
-K_{y}^{2}-K_{z}^{2} & K_{x} K_{y} & K_{x} K_{z} \\
K_{x} K_{y} & -K_{x}^{2}-K_{z}^{2} & K_{y} K_{z} \\
K_{x} K_{z} & K_{y} K_{z} & -K_{x}^{2}-K_{y}^{2}
\end{array}\right]
\end{aligned}
$$

Writing out the $(1,2)$ element of $e^{K \theta}$ (as an example) we have:
$\left(e^{K \theta}\right)_{1,2}=O+\left(-K_{z}\right) \theta+\frac{1}{2!}\left(K_{x} K_{y}\right) \theta^{2}+\frac{1}{3!} K_{2} \theta^{3}+\cdots$
Recall that:

$$
\begin{aligned}
\sin \theta & =\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots \\
\cos \theta & =1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots \\
V \theta & =1-C \theta=\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\frac{\theta^{6}}{6!}-\cdots
\end{aligned}
$$

We can write:

$$
\begin{aligned}
\left(e^{K \theta}\right)_{1,2}= & \left(-K_{z}\right) \theta+\frac{1}{3!} K_{2} \theta^{3}-\frac{1}{5!} K_{2} \theta^{5}+\cdots \\
& +\frac{1}{2!}\left(K_{x} K_{y}\right) \theta^{2}-\frac{1}{4}\left(K_{x} K_{y}\right) \theta^{4}+\cdots
\end{aligned}
$$

Or:
$\left(e^{K \theta}\right)_{1,2}=-K_{2} S \theta+K_{x} K_{y} V \theta$
Which is the value given in (2.80). Other elements may be checked similarly.
2.16) In method 1 , the multiplication of two 3×3 matrices requires 27 multiplications and 18 additions. the computation of ${ }_{B}^{A} R$ takes two matrix multiplies, or 57 multiplications, 36 additions the computation of ${ }_{B}^{A} R^{B} P$ is 9 mult. and 6 additions. Hence, in one second this method will require:
$30 \times$ computation of ${ }_{D}^{A} R=30 \times 54$ mult.

$$
30 \times 36 \text { add }
$$

$100 \times$ computation of ${ }^{A} p=100 \times 9$ mult.

$$
100 \times 6 \text { add. }
$$

Total $=2520$ mult., 1680 Add.
In method two, computation of ${ }_{D}^{C} R^{D} P$ requires 9 mult. and 6 add.; likewise the computation of ${ }_{C}^{B} R^{C} P$ and ${ }_{B}^{A} R^{B} P$, for a total of 27 mult. and 18 add. These must occur 100 times $/ \mathrm{sec}$., so in one second we have:
27×100 mult. $=2700$ mult.
18×100 add. $=1800$ add.
Therefore, method 1 is superior, but not by much.
2.17) ${ }^{A} P=\left[\begin{array}{c}P_{x} \\ P_{y} \\ P_{z}\end{array}\right]=\left[\begin{array}{c}R \cos \theta \\ R \sin \theta \\ Z\end{array}\right]$
2.18) ${ }^{A} P=\left[\begin{array}{c}P_{x} \\ P_{y} \\ P_{z}\end{array}\right]=\left[\begin{array}{c}R \cos \alpha \cos \beta \\ R \sin \alpha \cos \beta \\ R \sin \beta\end{array}\right]$
2.19) In the $z-y-z$ Euler Angle set, the first rotation is:
$R_{1}=\operatorname{rot}(\hat{z}, \alpha)$
The second rotation expressed in fixed coordinates is:
$R_{2}=\operatorname{rot}(\hat{z}, \alpha) \operatorname{rot}(\hat{y}, \beta) \operatorname{rot}^{-1}(\hat{z}, \alpha)$
The third is:
$R_{3}=\left(R_{2} R_{1}\right) \operatorname{rot}(\hat{z}, \gamma)\left(R_{2} R_{1}\right)^{-1}$
The result is:
$R=R_{3} R_{2} R_{1}=\operatorname{rot}(\hat{z}, \alpha) \operatorname{rot}(\hat{y}, \beta) \operatorname{rot}(\hat{z}, \gamma)$
Which can be multiplied out to give the result of (2.72).
2.20) This is easily derived if you work backwards. i.e, substitute into Rodriquez's formula wherever $\hat{K} \otimes \hat{Q}$ or $\hat{K} \cdot \hat{Q}$ occur, collect terms, and you'll get (2.80).
2.21) Just use the given approximations in (2.80) to obtain:
$R_{K}(\delta \theta)=\left[\begin{array}{ccc}1 & -K_{Z} \delta \theta & K_{Y} \delta \theta \\ K_{Z} \delta \theta & 1 & -K_{X} \delta \theta \\ -K_{Y} \delta \theta & K_{X} \delta \theta & 1\end{array}\right]$
More on this in Chapter 5.
2.22) So, given $R_{1}=R_{J}(\alpha)$ and $R_{2}=R_{K}(\beta)$ with $\alpha \ll$ 1 and $\beta \ll 1$; show $R_{1} R_{2}=R_{2} R_{1}$ if we form the product $R_{1} R_{2}$ and use $\alpha \beta \cong 0$ we have:
$R_{\mathrm{l}} R_{2}=\left[\begin{array}{ccc}1 & -J_{Z} \alpha-K_{Z} \beta & J_{Y} \alpha+K_{Y} \beta \\ J_{Z} \alpha+K_{Z} \beta & 1 & -J_{X} \alpha-K_{X} \beta \\ -J_{Y} \alpha-K_{Y} \beta & J_{X} \alpha+K_{X} \beta & 1\end{array}\right]$
We see that j and k, as well as α and β appear symmetrically, so $R_{1} R_{2}=R_{2} R_{1}$.
2.23) By definition ${ }^{U} P_{\mathrm{AORG}}={ }^{U} P_{1}$. Next, the vector from P_{1} TO P_{2} is a vector along the positive xaxis, so: ${ }^{U} X_{A}={ }^{U} P_{2}-{ }^{U} P_{1}$, which normalized is: ${ }^{U} \hat{X}_{A}={ }^{U} X_{A} /\left\|^{U} X_{A}\right\|$.

Now ${ }^{U} V={ }^{U} P_{3}-{ }^{U} P_{1}$. A vector parallel to the positive Y_{A}-axis, can be formed using the GramSchmidt orthogonalization:
${ }^{U} Y_{A}={ }^{U} V-\left({ }^{U} V \cdot{ }^{U} \hat{X}_{A}\right)^{U} \hat{X}_{A}$
and
${ }^{U} \hat{Y}_{A}={ }^{U} Y_{A} /\left.\right|^{U} Y_{A} \mid$
Finally, the unit vector ${ }^{U} \hat{Z}_{A}$ can be found by a simple cross-product:
${ }^{U} \hat{Z}_{A}={ }^{v} \hat{X}_{A} \otimes{ }^{U} \hat{Y}_{A}$
Now:
${ }_{A}^{U} T=\left[\begin{array}{ccc:c}{ }^{U} \hat{X}_{A} & { }^{U} \hat{Y}_{A} & { }^{U} \hat{Z}_{A} & { }^{U} P_{\text {Aorb }} \\ \hdashline 0 & 0 & 0 & 1\end{array}\right]$
2.24) This is a bit tricky here's most of it: ${ }^{A} P={ }_{B}^{A} R^{B} P$ doesn't change length, so
$\therefore{ }^{A} P \cdot{ }^{A} P-{ }^{B} P \cdot{ }^{B} P=0$
$\underbrace{\left({ }^{A} P-{ }^{B} P\right)}_{F} \cdot \underbrace{\left({ }^{A} P+{ }^{B} P\right)}_{G}=0$
$\therefore F \perp G$
$F=\left({ }_{B}^{A} R-I\right){ }^{B} P G=\left({ }_{B}^{A} R+I\right){ }^{B} P$
${ }^{B} P=\left({ }_{B}^{A} R+I\right)^{-1} G$ (You can show ${ }_{B}^{A} R+I$ non-shawar)
$\therefore F=\underbrace{\left({ }_{B}^{A} R-I\right)\left({ }_{B}^{A} R+I\right)^{-1}}_{B} G$
so, $F=B G$
(Now, one can show that if $X \cdot Y=0$ and if $X=$ $A Y$ then a is skew-symmetric)
$\therefore B \in$ skew-sym matrices
$\left({ }_{B}^{A} R-I\right)=B\left({ }_{B}^{A} R+I\right)$
($I-B)_{B}^{A} R=I+B$ (now can show (I-B) non-show)
$\therefore \quad{ }_{B}^{A} R=(I-B)^{-1}(I+B) \quad$ Q.E.D.
2.25) Def. of e-val: $\lambda_{i} V_{i}=R V_{i}$ from physical insight we know $V_{i}=R V_{i}$ when V_{i} is the axis of rotation, $\therefore \lambda_{1}=1$ from (2.80) one can show (with some work) that $\operatorname{det}(R)=1$. From linear algebra we have:

$$
\Sigma_{i} \lambda_{i}=\operatorname{trace}(\mathrm{r}) \pi_{i} \lambda_{i}=\operatorname{det}(\mathrm{r})
$$

$\therefore \lambda_{1} \lambda_{2} \lambda_{3}=1$ or $\lambda_{2} \lambda_{3}=1$
And compute the trace(r) from (2.80) to get

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}+\lambda_{3}=1+2 \cos \theta \text { or } \lambda_{2}+\lambda_{3}=2 \cos \theta \tag{2}
\end{equation*}
$$

Now solve [1] \& [2] above for λ_{2} and λ_{3} to get
$\lambda_{2}+\frac{1}{\lambda_{2}}=2 \cos \theta ; \quad \lambda_{2}^{2}-2 \cos \theta \lambda_{2}+1=0$
$\lambda_{2}=\cos \theta \pm \sqrt{\cos ^{2} \theta-1}$
$\lambda_{2}=\cos \theta \pm i \sin \theta$
$\therefore \lambda_{1}=1$
$\lambda_{2}=\cos \theta+i \sin \theta=e^{i \theta}$
$\lambda_{3}=\cos \theta-i \sin \theta=e^{-i \theta}$ Q.E.D.
2.26) Somebody please send me a simple proof of this.
(For any given Euler convention it is not hard.)
2.27) ${ }_{B}^{A} T=\left[\begin{array}{rrrr}-1 & 0 & 0 & 3 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
2.28) ${ }_{C}^{A} T=\left[\begin{array}{rccc}0 & -0.5 & 0.866 & 3 \\ 0 & 0.866 & 0.5 & 0 \\ -1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$
2.29) ${ }_{C}^{B} T=\left[\begin{array}{rccc}0 & 0.5 & -0.866 & 0 \\ 0 & -0.866 & -0.5 & 0 \\ -1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$
2.30) ${ }_{A}^{C} T=\left[\begin{array}{cccc}0 & 0 & -1 & 2 \\ -0.5 & 0.866 & 0 & 3 * 0.5 \\ 0.866 & -0.5 & 0 & -3 * 0.866 \\ 0 & 0 & 0 & 1\end{array}\right]$
2.31) ${ }_{B}^{A} T=\left[\begin{array}{rrrr}-1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 4 \\ 0 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$
2.32) ${ }_{C}^{A} T=\left[\begin{array}{ccrr}0.866 & 0.5 & 0 & -3 \\ 0.5 & -0.866 & 0 & 4 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$
2.33) ${ }_{C}^{B} T=\left[\begin{array}{ccrc}-0.866 & -0.5 & 0 & 3 \\ 0 & 0 & +1 & 0 \\ -0.5 & 0.866 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
2.34) ${ }_{A}^{C} T=\left[\begin{array}{cccc}0.866 & 0.5 & 0 & -3^{*} .86+2 \\ 0.5 & -0.866 & 0 & -4^{*} .86-1.5 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$
2.35) Any R can be given: $R=R_{X}(\alpha) R_{Y}(\beta) R_{Z}(\gamma)$
and $\operatorname{det}(R)=\operatorname{det}\left(R_{X}(\alpha)\right) \cdot \operatorname{det}\left(R_{Y}(\beta)\right) \cdot \operatorname{det}\left(R_{Z}(\gamma)\right)$
Using the formulas for rotation about a principle axis ((2.77) - (2.79)) its easy to show
$\operatorname{det}\left(R_{x}(\alpha)\right)=1 \quad \forall \alpha$
$\operatorname{det}\left(R_{y}(\beta)\right)=1 \quad \forall \beta$
$\operatorname{det}\left(R_{z}(\gamma)\right)=1 \quad \forall \gamma$
$\therefore \operatorname{det}(R)=1 \cdot 1 \cdot 1=1 \quad$ Q.E.D.
2.36) From Cayley's formula, the number of parameters needed to specify a rotation is the number of free parameters in an NXN skew symmetric matrix, which is $\frac{1}{2}\left(N^{2}-N\right)$. The translational degrees of freedom are, of course n, so total is:
$\operatorname{dof}(N)=N+\frac{1}{2}\left(N^{2}-N\right)=\frac{1}{2}\left(N^{2}+N\right) \quad$ Q.E.D.
2.37) Form (2,4) element of $-{ }_{B}^{A} R^{T A} P_{\text {borb }}$

To get: $\mathbf{- 6 . 4}$
2.38) $V_{1}^{T} V_{2}=\cos \theta, R$ preserves angles, so,

$$
\begin{aligned}
\left(R V_{1}\right)^{T}\left(R V_{2}\right) & =V_{1}^{r} V_{2} \\
V_{1}^{T} R^{T} R V_{2} & =V_{1}^{T} V_{2} \quad \therefore \quad R^{T} R=I \Rightarrow R^{T}=R^{-1}
\end{aligned}
$$

2.39) $\varepsilon_{y}^{2}=\frac{1}{y}\left(1+r_{11}+r_{22}+r_{33}\right)$
$\varepsilon_{y}^{2}>$ epsilon?

Yes
$\overline{\varepsilon_{y}}=\sqrt{\varepsilon_{y}^{2}}$
No
$\varepsilon_{1}=\left(r_{23}-r_{32}\right) / 4 \varepsilon_{y}$
$\varepsilon_{y}=0$
$\varepsilon_{2}=\left(r_{31}-r_{13}\right) / 4 \varepsilon_{y}$
$\varepsilon_{1}^{2}=-1 / 2\left(r_{22}+r_{33}\right)$
$\varepsilon_{1}^{2}>$ epsilon?
$\varepsilon_{3}=\left(r_{12}-r_{21}\right) / 4 \varepsilon_{y}$

Yes	No	
$\varepsilon_{1}=\sqrt{\varepsilon_{1}^{2}}$	$\varepsilon_{1}=0$	
$\varepsilon_{2}=r_{12} / 2 \varepsilon_{1}$	$\varepsilon_{2}^{2}=\frac{1}{2}\left(1-r_{33}\right)$	
$\varepsilon_{3}=r_{13} / 2 \varepsilon_{1}$	$\varepsilon_{2}^{2}>$ epsilon?	
	Yes	No
	$\varepsilon_{2}=\sqrt{\varepsilon_{2}^{2}}$	$\varepsilon_{2}=0$
	$\varepsilon_{3}=r_{23} / 2 \varepsilon_{2}$	$\varepsilon_{3}=1$

2.40) Similar to algorithms of Section 2.8 .
2.41) Similar to algorithms of Section 2.8 .

Chapter 2 Solutions for Introduction to Robotics

1. a) Use (2.3) to obtain

$$
{ }_{B}^{A} R=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

b) Use (2.74) to get

$$
\begin{aligned}
\alpha & =90 \text { degrees } \\
\beta & =90 \text { degrees } \\
\gamma & =-90 \text { degrees }
\end{aligned}
$$

2. a) Use (2.64) to obtain

$$
{ }_{B}^{A} R=\left[\begin{array}{ccc}
.330 & -.770 & .547 \\
.908 & .418 & .0396 \\
-.259 & .483 & .837
\end{array}\right]
$$

b) Answer is the same as in (a) according to (2.71)
3. Use (2.19) to obtain the transformation matrices. The rotation is X-Y-Z fixed angles, so use (2.64) for that 3×3 submatrix, with angles

$$
\begin{aligned}
\gamma & =0 \text { degrees } \\
\beta & =-\sin ^{-1}\left(\frac{\text { tripod_height }}{\text { distance_along_optical_axis }}\right)=-\sin ^{-1}\left(\frac{1.5}{5}\right)=-107 \text { degrees } \\
\alpha_{C} & =0 \text { degrees } \\
\alpha_{D} & =120 \text { degrees } \\
\alpha_{E} & =240 \text { degrees }
\end{aligned}
$$

The position vectors to the camera-frame origins are

$$
\begin{aligned}
{ }^{B} P_{C O R G}= & {\left[\begin{array}{c}
\text { horizontal_distance } \\
0 \\
\text { tripod_height }
\end{array}\right]=\left[\begin{array}{c}
4.77 \\
0 \\
1.50
\end{array}\right] } \\
{ }^{B} P_{D O R G}= & {\left[\begin{array}{c}
\text { horizontal_distance } \times \cos \alpha_{D} \\
\text { horizontal_distance } \times \sin \alpha_{D} \\
\text { tripod_height }
\end{array}\right]=\left[\begin{array}{c}
-2.39 \\
4.13 \\
1.5
\end{array}\right] } \\
{ }^{B} P_{E O R G}= & {\left[\begin{array}{c}
\text { horizontal_distance } \times \cos \alpha_{E} \\
\text { horizontal_distance } \times \sin \alpha_{E} \\
\text { tripod_height }
\end{array}\right]=\left[\begin{array}{c}
-2.38 \\
-4.13 \\
1.50
\end{array}\right], }
\end{aligned}
$$

where horizontal_distance $=\sqrt{(\text { distance_along_optical_axis })^{2}-(\text { tripod_height })^{2}}$. Combining the rotation and translation yields the transformation matrices via (2.19) as

$$
\begin{aligned}
& { }_{C}^{B} T=\left[\begin{array}{cccc}
-.300 & 0 & -.954 & 4.77 \\
0 & 1.00 & 0 & 0 \\
.954 & 0 & -.300 & 1.50 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }_{D}^{B} T=\left[\begin{array}{cccc}
.150 & -.866 & .477 & -2.39 \\
-.260 & -.500 & -.826 & 4.13 \\
.954 & 0 & -.300 & 1.50 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& { }_{E}^{B} T=\left[\begin{array}{cccc}
.150 & .866 & .477 & -2.39 \\
.260 & -.500 & .826 & -4.13 \\
.954 & 0 & -.300 & 1.50 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

4. The camera-frame origin is located at ${ }^{B} P_{C O R G}=\left[\begin{array}{lll}7 & -2 & 5\end{array}\right]^{\top}$. Use (2.19) to get the transformation, ${ }_{C}^{B} T$. The rotation is Z-Y-X Euler angles, so use (2.71) with

$$
\begin{aligned}
\alpha & =0 \text { degrees } \\
\beta & =-110 \text { degrees } \\
\gamma & =-20 \text { degrees }
\end{aligned}
$$

to get

$$
{ }_{C}^{B} T=\left[\begin{array}{cccc}
-.342 & .321 & -.883 & 7.00 \\
0 & .940 & .342 & -2.00 \\
.940 & .117 & -.321 & 5.00 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

5. Let

$$
{ }^{B} P_{1}={ }^{B} P_{0}+5{ }^{B} V_{0}=\left[\begin{array}{lll}
9.5 & 1.00 & -1.50
\end{array}\right]^{\top}
$$

The object's position in $\{A\}$ is

$$
{ }^{A} P_{1}={ }_{B}^{A} T^{B} P_{1}=\left[\begin{array}{lll}
-4.89 & 2.11 & 3.60
\end{array}\right]^{\top}
$$

6. (2.1)

$$
\begin{aligned}
R & =\operatorname{rot}(\hat{Y}, \phi) \operatorname{rot}(\hat{Z}, \theta) \\
& =\left[\begin{array}{ccc}
\mathrm{c} \phi & 0 & \mathrm{~s} \phi \\
0 & 1 & 0 \\
-\mathrm{s} \phi & 0 & \mathrm{c} \phi
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{c} \theta & -\mathrm{s} \theta & 0 \\
\mathrm{~s} \theta & \mathrm{c} \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mathrm{c} \phi \mathrm{c} \theta & -\mathrm{c} \phi \mathrm{~s} \theta & \mathrm{~s} \phi \\
\mathrm{~s} \theta & \mathrm{c} \theta & 0 \\
-\mathrm{s} \phi \mathrm{c} \theta & \mathrm{~s} \phi \mathrm{~s} \theta & \mathrm{c} \phi
\end{array}\right]
\end{aligned}
$$

7. (2.2)

$$
\begin{aligned}
R & =\operatorname{rot}(\hat{X}, 60) \operatorname{rot}(\hat{Y},-45) \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & .500 & -.866 \\
0 & .866 & .500
\end{array}\right]\left[\begin{array}{ccc}
.707 & 0 & -.707 \\
0 & 1 & 0 \\
.707 & 0 & .707
\end{array}\right] \\
& =\left[\begin{array}{ccc}
.707 & 0 & -.707 \\
-.612 & .500 & -.612 \\
.353 & .866 & .353
\end{array}\right]
\end{aligned}
$$

8. (2.12) Velocity is a "free vector" and only will be affected by rotation, and not by translation:

$$
\left.\begin{array}{rl}
{ }^{A} V & ={ }_{B}^{A} R^{B} V=\left[\begin{array}{ccc}
.707 & 0 & -.707 \\
-.612 & .500 & -.612 \\
.353 & .866 & .353
\end{array}\right]\left[\begin{array}{l}
30.0 \\
40.0 \\
50.0
\end{array}\right] \\
& =[-14.1-29.0 \\
62.9
\end{array}\right]^{\top} \text { - }
$$

9. (2.31)

$$
{ }_{B}^{C} T=\left[\begin{array}{cccc}
0 & 0 & -1 & 2 \\
.500 & -.866 & 0 & 0 \\
-.866 & -.500 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

10. (2.37) Using (2.45) we get that

$$
{ }^{B} P_{A O R G}=-{ }_{B}^{A} R^{\mathrm{T} A} P_{A O R G}=-\left[\begin{array}{ccc}
.25 & .87 & .43 \\
.43 & -.50 & .75 \\
.86 & .00 & -.50
\end{array}\right]\left[\begin{array}{c}
5.0 \\
-4.0 \\
3.0
\end{array}\right]=\left[\begin{array}{c}
.94 \\
-6.4 \\
-2.8
\end{array}\right]
$$

